1
|
Tang LL, Xu XY, Zhang M, Qin Q, Xue R, Jiang S, Yang X, Liang C, Wang QS, Yu CJ, Zhang ZR. KAT7 contributes to ponatinib-induced hypertension by promoting endothelial senescence and inflammatory responses through activating NF-κB signaling pathway. J Hypertens 2025; 43:827-840. [PMID: 40084466 PMCID: PMC11970613 DOI: 10.1097/hjh.0000000000003979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND PURPOSE Ponatinib, a tyrosine kinase inhibitor (TKI) leads to hypertension; however, the mechanisms remain elusive. We aimed to investigate whether lysine acetyltransferase 7 (KAT7), a key regulator of cellular senescence that is closely associated with cardiovascular diseases, involves in ponatinib-induced hypertension. METHODS AND RESULTS After administering ponatinib to Sprague-Dawley (SD) rats for 8 days, we measured blood pressure, vasodilation, and endothelial function using tail-cuff plethysmography, isometric myography, and the Total NO Assay kit, respectively. The results indicated that ponatinib increased blood pressure, impaired endothelium-dependent relaxation (EDR), and caused injury to endothelial cells in SD rats. Furthermore, PCR and Western blot experiments demonstrated an upregulation of KAT7 expression in rat mesenteric artery endothelial cells (MAECs) following ponatinib treatment. To further study the role of KAT7 in ponatinib-induced hypertension, we divided the SD rats into four groups: control, ponatinib, WM-3835 (a KAT7 inhibitor), and ponatinib plus WM-3835. Notably, WM-3835 administration significantly improved ponatinib-induced hypertension and EDR dysfunction in SD rats. Mechanistically, over-expression of KAT7 (OE-KAT7) in MAECs led to cellular senescence and inflammation, phenomena that were also observed in the mesenteric arteries of ponatinib-treated rats and in MAECs exposed to ponatinib. However, WM-3835 mitigated these detrimental effects in both in vivo and in vitro experiments. Additionally, both OE-KAT7 and ponatinib treatment induced H3K14 acetylation (H3K14ac), with OE-KAT7 also elevating the recruitment of the H3K14ac to the p21 promoter. Moreover, BAY 11-7085, a nuclear factor (NF)-κB inhibitor, potently alleviated the accumulation of IL-6 and IL-8, as well as endothelial cell senescence induced by ponatinib and KAT7 overexpression. CONCLUSION Our data indicate that ponatinib-induced elevation of KAT7 led to endothelial cells senescence and inflammatory responses through H3K14 acetylation and NF-κB signaling pathway, subsequently caused vasotoxicity and hypertension.
Collapse
Affiliation(s)
- Liang-Liang Tang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Xin-Yu Xu
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Mei Zhang
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| | - Qi Qin
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Rong Xue
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Shuai Jiang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Xu Yang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Chen Liang
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| | - Qiu-Shi Wang
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| | - Chang-Jiang Yu
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Zhi-Ren Zhang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| |
Collapse
|
2
|
Sabouri M, Etemadifar M, Dehghani Firoozabadi F, Sindarreh S, Akhavan-Sigari A. Primary central nervous system tumors in patients with multiple sclerosis. BMC Neurol 2025; 25:147. [PMID: 40205341 PMCID: PMC11983722 DOI: 10.1186/s12883-025-04095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neuroinflammatory disorder that can present with clinical and radiological features indistinguishable from a central nervous system (CNS) tumor. Previous studies suggest that whilepatients with MS have a reduced overall risk of cancer, they may have an increased risk of developing CNS malignancies. METHODS In this cross-sectional observational study, we investigated the prevalence of CNS tumors in patients with MS using data from the Isfahan MS clinic registry between 2020 and 2023 who had been diagnosed with primary CNS tumors following their diagnosis of MS. RESULTS Among the 2,280 registered patients, 36 individuals were diagnosed with CNS tumors, yielding a prevalence of 1.58%. The distribution of primary CNS tumors among these patients was as follows: 41.7% had pituitary adenomas, 30.6% had meningiomas, 13.9% had primary CNS lymphoma, 5.6% had acoustic neuroma, and the remaining cases included epidermoid cysts (2.8%), neurofibromas (2.8%), and glioblastoma multiforme (2.8%). The mean age at tumor diagnosis was approximately 45 years, while the mean age at MS diagnosis among those who subsequently developed a CNS tumor was 31.5 years. CONCLUSION The overall prevalence of primary CNS tumors in our MS population was 1.58%. Meningiomas and pituitary adenomas were the most common types of CNS tumors observed in these patients. Given potential symptom overlap, new or unusual symptoms not typical of MS should be closely monitored or assessed for possible CNS malignancies.
Collapse
Affiliation(s)
- Masih Sabouri
- Department of Neurosurgery, Alzahra University Hospital, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurosurgery, Alzahra University Hospital, Isfahan, Iran
| | | | - Setayesh Sindarreh
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Akhavan-Sigari
- Department of Neurosurgery, Alzahra University Hospital, Isfahan, Iran.
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Shin JW, Jang DH, Kim SY, Lee JJ, Gil TH, Shim E, Kim JY, Kim HS, Conboy MJ, Conboy IM, Wiley CD, Shin JS, Jeon OH. Propagation of senescent phenotypes by extracellular HMGB1 is dependent on its redox state. Metabolism 2025; 168:156259. [PMID: 40189139 DOI: 10.1016/j.metabol.2025.156259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND & PURPOSE Cellular senescence spreads systemically through blood circulation, but its mechanisms remain unclear. High mobility group box 1 (HMGB1), a multifunctional senescence-associated secretory phenotype (SASP) factor, exists in various redox states. Here, we investigate the role of redox-sensitive HMGB1 (ReHMGB1) in driving paracrine and systemic senescence. METHODS We applied the paracrine senescence cultured model to evaluate the effect of ReHMGB1 on cellular senescence. Each redox state of HMGB1 was treated extracellularly to assess systemic senescence both in vitro and in vivo. Senescence was determined by SA-β-gal & EdU staining, p16INK4a and p21 expression, RT-qPCR, and Western blot methods. Bulk RNA sequencing was performed to investigate ReHMGB1-driven transcriptional changes and underlying pathways. Cytokine arrays characterized SASP profiles from ReHMGB1-treated cells. In vivo, young mice were administered ReHMGB1 systemically to induce senescence across multiple tissues. A muscle injury model in middle-aged mice was used to assess the therapeutic efficacy of HMGB1 blockade. RESULTS Extracellular ReHMGB1, but not its oxidized form, robustly induced senescence-like phenotypes across multiple cell types and tissues. Transcriptomic analysis revealed activation of RAGE-mediated JAK/STAT and NF-κB pathways, driving SASP expression and cell cycle arrest. Cytokine profiling confirmed paracrine senescence features induced by ReHMGB1. ReHMGB1 administration elevated senescence markers in vivo, while HMGB1 inhibition reduced senescence, attenuated systemic inflammation, and enhanced muscle regeneration. CONCLUSION ReHMGB1 is a redox-dependent pro-geronic factor driving systemic senescence. Targeting extracellular HMGB1 may offer therapeutic potential for preventing aging-related pathologies.
Collapse
Affiliation(s)
- Ji-Won Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Dong-Hyun Jang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - So Young Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Je-Jung Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae-Hwan Gil
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunha Shim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yeon Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyeon Soo Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Rana KS, Marwah MK, Raja FNS, Dias I, Hindalekar YS, Al Tahan MA, Brown JE, Bellary S. The influence of senescent associated secretory phenotype on glucose homeostasis in C2C12 muscle cells: insights into potential p38 inhibitor interventions. J Recept Signal Transduct Res 2025; 45:118-127. [PMID: 40051308 DOI: 10.1080/10799893.2025.2475441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Increased accumulation of senescent cells with aging is associated with reduced ability of insulin-target tissues to utilize glucose, resulting in increased insulin resistance and glucotoxicity. We investigated the role of the senescent-associated secretory phenotype (SASP) within C2C12, skeletal muscle cells on glucose homeostasis and if such effects could be reduced by blocking pro-inflammatory pathways. C2C12 myotubes were treated with 40% conditioned media from senescent fibroblasts. Indirect glucose uptake and glycogen content were measured. The effect of SASP on the generation of reactive oxygen species [1] and mitochondrial function was also measured. The experiments above were repeated with a p38 inhibitor. 40% SASP treatment significantly decreased glucose utilization and glycogen storage within myotubes (p < 0.0001). 40% SASP was successful in inducing oxidative stress and increased mitochondrial density, whilst reducing membrane potential following 48 h of incubation (p < 0.0001) and blocking NF-κβ, restored glucose utilization (p < 0.01) despite the presence of SASP. Co-incubation of 40% SASP with an NF-κβ inhibitor eliminates excessive ROS production and restores mitochondrial activity to levels comparable to control treatment (p < 0.0001). This study shows changes in glucose homeostasis in senescent cells is mediated through SASP, and interventions aimed at mitigating pro-inflammatory pathways can potentially improve insulin resistance.
Collapse
Affiliation(s)
- Karan S Rana
- School of Biosciences, College of Health and Life, Aston University, Birmingham, UK
| | - Mandeep K Marwah
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Farah N S Raja
- School of Engineering and Physical Science, Aston University, Birmingham, UK
| | - Irundika Dias
- School of Engineering and Physical Science, Aston University, Birmingham, UK
| | | | - Mohamad Anas Al Tahan
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - James E Brown
- School of Biosciences, College of Health and Life, Aston University, Birmingham, UK
| | - Srikanth Bellary
- School of Biosciences, College of Health and Life, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Pan P, Cao S, Gao H, Qu X, Ma Y, Yang J, Pei X, Yang Y. Immp2l gene knockout induces granulosa cell senescence by activation of cGAS-STING pathway via TFAM-mediated mtDNA leakage. Int J Biol Macromol 2025; 307:142368. [PMID: 40120895 DOI: 10.1016/j.ijbiomac.2025.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Granulosa cell-produced inflammatory factors may be key contributors to ovarian dysfunction, and Immp2l deficiency accelerates ovarian aging via granulosa cell senescence; however, the role of inflammation in granulosa cell senescence is largely unknown. Therefore, in this study, cGAS-STING-mediated inflammation was explored in Immp2l deficiency-induced granulosa cell senescence. Immp2l deficiency led to senescence-associated secretory phenotype (SASP) and granulosa cell senescence. Immp2l knockout caused mitochondrial dysfunction and mitochondrial DNA (mtDNA) leakage into the cytoplasm. The cytoplasmic mtDNA was recognized by the DNA-sensing molecule cGAS-STING, which activates cGAS-STING and key downstream interferon-stimulated genes (ISGs) and then promotes the secretion of proinflammatory factors, leading to SASP in senescent granulosa cells. Interestingly, the mitochondrial inner membrane pore protein (Cyclophilin D40) CyPD40 and the outer membrane pore protein voltage-dependent-anion channel 1 (VDAC1) were markedly increased in senescent granulosa cells, accompanied by significantly increased expression of the mtDNA stability protein mitochondrial transcription factor A (TFAM). Downregulation of TFAM with siRNA in senescent granulosa cells improved mitochondrial function, significantly decreased mtDNA in the cytoplasm, inhibited the cGAS-STING pathway and markedly decreased CyPD40 and VDAC1 protein levels in TFAM-treated senescent granulosa cells. The SASP phenotype was also alleviated. In addition, senescent granulosa cells were treated with procyanidin B2 (PCB2), which has anti-inflammatory effects, and the TFAM-mediated mtDNA-cGAS-STING pathway was inhibited, accompanied by a markedly reduced SASP phenotype and granulosa cell senescence. In conclusion, Immp2l gene knockout induced granulosa cell senescence by activation of the cGAS-STING pathway via TFAM-mediated mtDNA leakage into the cytoplasm through the CyPD40 and the VDAC1.
Collapse
Affiliation(s)
- Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Sinan Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoya Qu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Emergency Department, The First People's Hospital of Yinchuan, The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
7
|
Lee SM, Seo E, Kim YH, Min J. Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119907. [PMID: 39880130 DOI: 10.1016/j.bbamcr.2025.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S. cerevisiae-derived vacuoles degrade macromolecules using hydrolytic enzymes and mitigate these aging effects. Our study assessed the anti-aging potential of yeast vacuoles in human lung fibroblasts treated with hydrogen peroxide (H2O2). Pretreatment with vacuoles at concentrations of 1, 5, and 10 μg/ml decreased SA-β-gal-positive cell counts, reduced mRNA levels of senescence markers (p21 and p53), and senescence-associated secretory phenotype (SASP) factors (IL-6 and TNF-α) compared to controls treated with H2O2 alone. Additionally, these vacuoles significantly diminished intracellular reactive oxygen species (ROS) levels, indicating their potential as effective lung anti-senescence agents. This study suggests that yeast vacuoles could be used as a preventive measure against changes associated with lung aging.
Collapse
Affiliation(s)
- Su-Min Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea
| | - Eunsu Seo
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea; Biomedical Research Institute, Chungbuk National University Hospital, 1 Sunhwan-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea.
| |
Collapse
|
8
|
Alavimanesh S, Nayerain Jazi N, Choubani M, Saeidi F, Afkhami H, Yarahmadi A, Ronaghi H, Khani P, Modarressi MH. Cellular senescence in the tumor with a bone niche microenvironment: friend or foe? Clin Exp Med 2025; 25:44. [PMID: 39849183 PMCID: PMC11759293 DOI: 10.1007/s10238-025-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.
Collapse
Affiliation(s)
- Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negar Nayerain Jazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Choubani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
9
|
Kumar K, Moon BH, Kumar S, Angdisen J, Kallakury BV, Fornace AJ, Suman S. Senolytic agent ABT-263 mitigates low- and high-LET radiation-induced gastrointestinal cancer development in Apc1638N/+ mice. Aging (Albany NY) 2025; 17:97-115. [PMID: 39792466 PMCID: PMC11810060 DOI: 10.18632/aging.206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.g., heavy ions), increases the risk of gastrointestinal (GI) cancer. Previous studies have linked IR-induced GI cancer to cellular senescence associated secretory phenotype (SASP) signaling. This study explores the potential of senolytic therapy to mitigate IR-induced GI carcinogenesis. Male Apc1638N/+ mice were exposed to γ and 28Si-ions (69 keV/μm) IR. Two months later, they were treated with the senolytic agent ABT-263 orally for 5 days/week until euthanasia, followed by tumor counting and biospecimen collection at five months post-exposure. Tumors were classified as adenoma or carcinoma by a pathologist. Serum cytokine levels were measured, and the markers of senescence (p16), SASP (IL6), and oncogenic β-catenin signaling were assessed using in-situ immunostaining of intestinal tissue. Both low- and high-LET radiation exposure led to an increased frequency of adenoma and carcinoma in Apc1638N/+ mice, accompanied by increased cellular senescence, acquisition of SASP, and overexpression of BCL-XL protein in a subset of these cells. Furthermore, administration of ABT-263 resulted in the elimination of senescent/SASP cells, a decrease in pro-inflammatory cytokines (TNFRSF1B, CCL20, CXCL4, P-selectin, CCL27, and CXCL16) at the systemic level, and downregulation of β-catenin signaling that coincided with decreased GI cancer development. This study suggests a link between IR-induced senescent/SASP cell accumulation and GI cancer development. It also shows that the senolytic agent ABT-263 can regulate IR-induced inflammatory cytokines and carcinogenic mediators both systemically and in intestinal tissue. These findings support the potential of senolytic intervention to reduce IR-induced GI cancer risk.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bhaskar V.S. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
10
|
Lavarti R, Cai L, Alvarez‐Diaz T, Medina‐Rodriguez T, Bombin S, Raju RP. Senescence landscape in the liver following sepsis and senolytics as potential therapeutics. Aging Cell 2025; 24:e14354. [PMID: 39444093 PMCID: PMC11709100 DOI: 10.1111/acel.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Senescence, caused by cell-cycle arrest, is a hallmark of aging. Senescence has also been described in embryogenesis, wound healing, and acute injuries. Sepsis is characterized by a dysregulated host response to infection, leading to organ dysfunction and mortality. Most of the pathophysiology of human sepsis is recapitulated in the mouse model of polymicrobial sepsis, developed by cecal ligation and puncture (CLP). In this report, we demonstrate a rapid onset of cellular senescence in the liver of mice subjected to CLP-induced sepsis, characterized by the upregulation of p21, p53, and other senescence markers, including SA-βgal. Using RNAscope, confocal microscopy, and flow cytometry, we further confirm the emergence of p21-expressing senescence phenotype in the liver 24 h after sepsis induction. Senescence was observed in several cell types in the liver, including hepatocytes, endothelial cells, and macrophages. We determined the landscape of senescence phenotype in murine sepsis by single-cell sequencing, which further ascertained that this cell fate is not confined to any particular cell type but displays a heterogeneous distribution. Furthermore, we observed a significant reduction in mortality following sepsis when mice were treated with senolytics, a combination of dasatinib and quercetin, before the CLP surgery. Our experiments unequivocally demonstrated a rapid development of cellular senescence with sepsis and, for the first time, described the senescence landscape in the sepsis liver and the possible role of senescent cells in the worsening outcome following sepsis.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Lun Cai
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Tatiana Alvarez‐Diaz
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Thalia Medina‐Rodriguez
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Sergei Bombin
- Georgia Cancer Center, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
11
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
12
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
13
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
14
|
Gorodilova AV, Kharisova CB, Osinnikova MN, Kitaeva KV, Filin IY, Mayasin YP, Solovyeva VV, Rizvanov AA. The Well-Forgotten Old: Platelet-Rich Plasma in Modern Anti-Aging Therapy. Cells 2024; 13:1755. [PMID: 39513862 PMCID: PMC11545519 DOI: 10.3390/cells13211755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Currently, approaches to personalized medicine are actively developing. For example, the use of platelet-rich plasma (PRP) is actively growing every year. As a result of activation, platelets release a wide range of growth factors, cytokines, chemokines, and angiogenic factors, after which these molecules regulate chemotaxis, inflammation, and vasomotor function and play a crucial role in restoring the integrity of damaged vascular walls, angiogenesis, and tissue regeneration. Due to these characteristics, PRP has a wide potential in regenerative medicine and gerontology. PRP products are actively used not only in esthetic medicine but also to stimulate tissue regeneration and relieve chronic inflammation. PRP therapy has a number of advantages, but the controversial results of clinical studies, a lack of standardization of the sample preparation of the material, and insufficient objective data on the evaluation of efficacy do not allow us to unambiguously look at the use of PRP for therapeutic purposes. In this review, we will examine the current clinical efficacy of PRP-based products and analyze the contribution of PRP in the therapy of diseases associated with aging.
Collapse
Affiliation(s)
- Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420008 Kazan, Russia
| |
Collapse
|
15
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
16
|
Hung CH, Wu SY, Yao CID, Yeh HH, Lin CC, Chu CY, Huang TY, Shen MR, Lin CH, Su WC. Defective N-glycosylation of IL6 induces metastasis and tyrosine kinase inhibitor resistance in lung cancer. Nat Commun 2024; 15:7885. [PMID: 39251588 PMCID: PMC11385228 DOI: 10.1038/s41467-024-51831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
The IL6-GP130-STAT3 pathway facilitates lung cancer progression and resistance to tyrosine kinase inhibitors. Although glycosylation alters the stability of GP130, its effect on the ligand IL6 remains unclear. We herein find that N-glycosylated IL6, especially at Asn73, primarily stimulates JAK-STAT3 signaling and prolongs STAT3 phosphorylation, whereas N-glycosylation-defective IL6 (deNG-IL6) induces shortened STAT3 activation and alters the downstream signaling preference for the SRC-YAP-SOX2 axis. This signaling shift induces epithelial-mesenchymal transition (EMT) and migration in vitro and metastasis in vivo, which are suppressed by targeted inhibitors and shRNAs against SRC, YAP, and SOX2. Osimertinib-resistant lung cancer cells secrete a large amount of deNG-IL6 through reduced N-glycosyltransferase gene expression, leading to clear SRC-YAP activation. deNG-IL6 contributes to drug resistance, as confirmed by in silico analysis of cellular and clinical transcriptomes and signal expression in patient specimens. Therefore, the N-glycosylation status of IL6 not only affects cell behaviors but also shows promise in monitoring the dynamics of lung cancer evolution.
Collapse
Affiliation(s)
- Chun-Hua Hung
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Yin Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Hsuan-Heng Yeh
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Yao Chu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yu Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Kaszubowska L, Kaczor JJ, Karnia MJ, Foerster J, Kmieć Z. Expression of a stress-inducible heme oxygenase-1 in NK cells is maintained in the process of human aging. Front Immunol 2024; 15:1398468. [PMID: 39100660 PMCID: PMC11294084 DOI: 10.3389/fimmu.2024.1398468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Heme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation, and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors, and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation, that is, NOD-like receptor protein 3 (NLRP3), glutathione (GSH), GSH disulfide (GSSG), and interleukin 6 (IL-6). Methods The study population comprised three age groups: young adults (age range, 19-23 years), older adults aged under 85 years (age range, 73-84 years), and older adults aged over 85 years (age range, 85-92 years). NLRP3, GSH, and GSSG concentrations were measured in serum, whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2, lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate (PMA) with ionomycin. Results The analysis of serum NLRP3, GSH, and GSSG concentrations revealed no statistically significant differences among the studied age groups. However, some typical trends of aging were observed, such as a decrease in GSH concentration and an increase in both GSSG level, and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover, statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells. Conclusions These results showed that NK cells can express HO-1 at a basal level, which was significantly increased in activated cells, even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.
Collapse
Affiliation(s)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| | | | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Travaglini S, Marinoni M, Visconte V, Guarnera L. Therapy-Related Myeloid Neoplasm: Biology and Mechanistic Aspects of Malignant Progression. Biomedicines 2024; 12:1054. [PMID: 38791019 PMCID: PMC11118122 DOI: 10.3390/biomedicines12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise after a documented history of chemo/radiotherapy as treatment for an unrelated condition and account for 10-20% of myelodysplastic syndromes and acute myeloid leukemia. T-MN are characterized by a specific genetic signature, aggressive features and dismal prognosis. The nomenclature and the subsets of these conditions have changed frequently over time, and despite the fact that, in the last classification, they lost their autonomous entity status and became disease qualifiers, the recognition of this feature remains of major importance. Furthermore, in recent years, extensive studies focusing on clonal hematopoiesis and germline variants shed light on the mechanisms of positive pressure underpinning the rise of driver gene mutations in t-MN. In this manuscript, we aim to review the evolution of defining criteria and characteristics of t-MN from a clinical and biological perspective, the advances in mechanistic aspects of malignant progression and the challenges in prevention and management.
Collapse
Affiliation(s)
- Serena Travaglini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimiliano Marinoni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Luca Guarnera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
19
|
Zhang W, Zhang K, Shi J, Qiu H, Kan C, Ma Y, Hou N, Han F, Sun X. The impact of the senescent microenvironment on tumorigenesis: Insights for cancer therapy. Aging Cell 2024; 23:e14182. [PMID: 38650467 PMCID: PMC11113271 DOI: 10.1111/acel.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The growing global burden of cancer, especially among people aged 60 years and over, has become a key public health issue. This trend suggests the need for a deeper understanding of the various cancer types in order to develop universally effective treatments. A prospective area of research involves elucidating the interplay between the senescent microenvironment and tumor genesis. Currently, most oncology research focuses on adulthood and tends to ignore the potential role of senescent individuals on tumor progression. Senescent cells produce a senescence-associated secretory phenotype (SASP) that has a dual role in the tumor microenvironment (TME). While SASP components can remodel the TME and thus hinder tumor cell proliferation, they can also promote tumorigenesis and progression via pro-inflammatory and pro-proliferative mechanisms. To address this gap, our review seeks to investigate the influence of senescent microenvironment changes on tumor development and their potential implications for cancer therapies.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
20
|
de Godoy MCX, Macedo JA, Gambero A. Researching New Drug Combinations with Senolytic Activity Using Senescent Human Lung Fibroblasts MRC-5 Cell Line. Pharmaceuticals (Basel) 2024; 17:70. [PMID: 38256903 PMCID: PMC10818379 DOI: 10.3390/ph17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Therapeutically targeting senescent cells seems to be an interesting perspective in treating chronic lung diseases, which are often associated with human aging. The combination of the drug dasatinib and the polyphenol quercetin is used in clinical trials as a senolytic, and the first results point to the relief of physical dysfunction in patients with idiopathic pulmonary fibrosis. In this work, we tested new combinations of drugs and polyphenols, looking for senolytic activity using human lung fibroblasts (MRC-5 cell line) with induced senescence. We researched drugs, such as azithromycin, rapamycin, metformin, FK-506, aspirin, and dasatinib combined with nine natural polyphenols, namely caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, gallic acid, epicatechin, hesperidin, quercetin, and resveratrol. We found new effective senolytic combinations with dasatinib and ellagic acid and dasatinib and resveratrol. Both drug combinations increased apoptosis, reduced BCL-2 expression, and increased caspase activity in senescent MRC-5 cells. Ellagic acid senolytic activity was more potent than quercetin, and resveratrol counteracted inflammatory cytokine release during senolysis in vitro. In conclusion, dasatinib and ellagic acid and dasatinib and resveratrol present in vitro senolytic potential like that observed for the combination in clinical trials of dasatinib and quercetin, and maybe they could be future alternatives in the senotherapeutic field.
Collapse
Affiliation(s)
- Maria Carolina Ximenes de Godoy
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n, Campinas 13034-685, SP, Brazil;
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Alessandra Gambero
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, s/n, Campinas 13034-685, SP, Brazil;
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil;
| |
Collapse
|
21
|
Guarnera L, Santinelli E, Galossi E, Cristiano A, Fabiani E, Falconi G, Voso MT. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions. Exp Hematol 2024; 129:104118. [PMID: 37741607 DOI: 10.1016/j.exphem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Enrico Santinelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elisa Galossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
22
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Callari M, Sola M, Magrin C, Rinaldi A, Bolis M, Paganetti P, Colnaghi L, Papin S. Cancer-specific association between Tau (MAPT) and cellular pathways, clinical outcome, and drug response. Sci Data 2023; 10:637. [PMID: 37730697 PMCID: PMC10511431 DOI: 10.1038/s41597-023-02543-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Tau (MAPT) is a microtubule-associated protein causing common neurodegenerative diseases or rare inherited frontotemporal lobar degenerations. Emerging evidence for non-canonical functions of Tau in DNA repair and P53 regulation suggests its involvement in cancer. To bring new evidence for a relevant role of Tau in cancer, we carried out an in-silico pan-cancer analysis of MAPT transcriptomic profile in over 10000 clinical samples from 32 cancer types and over 1300 pre-clinical samples from 28 cancer types provided by the TCGA and the DEPMAP datasets respectively. MAPT expression associated with key cancer hallmarks including inflammation, proliferation, and epithelial to mesenchymal transition, showing cancer-specific patterns. In some cancer types, MAPT functional networks were affected by P53 mutational status. We identified new associations of MAPT with clinical outcomes and drug response in a context-specific manner. Overall, our findings indicate that the MAPT gene is a potential major player in multiple types of cancer. Importantly, the impact of Tau on cancer seems to be heavily influenced by the specific cellular environment.
Collapse
Affiliation(s)
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Computational Oncology Unit, Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, Italy
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
24
|
Ziegler T, Tsiountsioura M, Meixner-Goetz L, Cvirn G, Lamprecht M. Polyphenols' Impact on Selected Biomarkers of Brain Aging in Healthy Middle-Aged and Elderly Subjects: A Review of Clinical Trials. Nutrients 2023; 15:3770. [PMID: 37686802 PMCID: PMC10490411 DOI: 10.3390/nu15173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
With a constantly growing elderly population, incidences of neurodegenerative diseases are also rising and are expected to further increase over the next years, while costing health systems across the world trillions of dollars. Therefore, biomarkers to detect manifestations of brain aging early and interventions to slow down its pace are of great interest. In the last years, the importance of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the context of cognitive function and the aging brain has increased, besides the already well-established amyloid-beta (Aβ) and tau plaques. Due to their wide range of beneficial health effects as well as their antioxidant and anti-inflammatory properties, a class of secondary plant-metabolites, the so-called polyphenols, gained increasing attention. In this review, we discuss the roles of BDNF, Aβ, NGF, and tau proteins as biomarkers of brain aging and the effect of dietary polyphenol interventions on these biomarkers, assessed via blood analysis, magnetic resonance imaging (MRI), and positron emission tomography (PET).
Collapse
Affiliation(s)
- Tobias Ziegler
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (T.Z.); (M.T.); (G.C.)
- Juice Plus+ Science Institute, Memphis, TN 38017, USA;
| | - Melina Tsiountsioura
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (T.Z.); (M.T.); (G.C.)
- Juice Plus+ Science Institute, Memphis, TN 38017, USA;
| | | | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (T.Z.); (M.T.); (G.C.)
| | - Manfred Lamprecht
- Juice Plus+ Science Institute, Memphis, TN 38017, USA;
- Green Beat Institute of Nutrient Research, 8010 Graz, Austria
| |
Collapse
|
25
|
Lara-Aguilar V, Crespo-Bermejo C, Llamas-Adán M, Grande-García S, Cortijo-Alfonso ME, Martín-Carbonero L, Domínguez L, Ryan P, de Los Santos I, Bartolomé-Sanchez S, Valle-Millares D, Jiménez-Sousa MÁ, Briz V, Fernández-Rodríguez A. HCV spontaneous clearers showed low senescence profile in people living with HIV under long ART. J Med Virol 2023; 95:e28955. [PMID: 37465865 DOI: 10.1002/jmv.28955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
Coinfection with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) increases immune activation, inflammation, and oxidative stress that could lead to premature senescence. Different HCV infections, either acute or chronic infection, could lead to distinct premature cellular senescence in people living with HIV (PLWHIV). Observational study in 116 PLWHIV under antiretroviral treatment with different HCV status: (i) n = 45 chronically infected with HCV (CHC); (ii) n = 36 individuals who spontaneously clarify HCV (SC); (iii) n = 35 HIV controls. Oxidative stress biomarkers were analyzed at lipid, DNA, protein, and nitrates levels, as well as antioxidant capacity and glutathione reductase enzyme. Replicative senescence was evaluated by relative telomere length (RTL) measurement. Additionally, 26 markers of Senescence-Associated Secretory Phenotype (SASP) were analyzed by multiplex immunoassays (Luminex xMAP technology). Differences were evaluated by generalized linear model (GLMs) adjusted by most significant covariates. The SC group had a senescence signature similar to the HIV control group and slightly lower SASP levels. However, significant differences were observed with respect to the CHC group, where an increase in the nitrate concentration [adjusted arithmetic mean ratio, aAMR = 1.73 (1.27-2.35), p < 0.001, q = 0.009] and the secretion of 13 SASP-associated factors [granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-β, interleukin (IL)-1β, IL-2, IL-8, IL-13, tumor necrosis factor (TNF)-α, IL-1α, IL-1RA, IL-7, IL-15, C-X-C motif chemokine ligand 10 (IP-10), stem cell factor (SCF); q < 0.1)] was detected. The CHC group also showed higher values of IL-1α, IP-10, and placental growth factor 1 (PIGF-1) than HIV controls. The SC group showed a slightly lower senescence profile than the HIV group, which could indicate a more efficient control of viral-induced senescence due to their immune strengths. Chronic HCV infection in PLWHIV led to an increase in nitrate and elevated SASP biomarkers favoring the establishment of viral persistence.
Collapse
Affiliation(s)
- Violeta Lara-Aguilar
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Celia Crespo-Bermejo
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Manuel Llamas-Adán
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Sergio Grande-García
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - María Engracia Cortijo-Alfonso
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | | | - Lourdes Domínguez
- VIH Unit, Internal Medicine Service, Doce de Octubre Hospital Biomedical Research Institute (imas12), Madrid, Spain
- King's College London University, London, UK
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Department of Infectious Diseases, HIV/Hepatitis Internal Medicine Service, Infanta Leonor University Hospital, Madrid, España
| | - Ignacio de Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Internal Medicine-Infectious Diseases Service, La Princesa University Hospital, Madrid, España
| | - Sofía Bartolomé-Sanchez
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Daniel Valle-Millares
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - María Ángeles Jiménez-Sousa
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Shaikh SB, Goracci C, Tjitropranoto A, Rahman I. Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets. Expert Rev Respir Med 2023; 17:351-364. [PMID: 37078192 PMCID: PMC10330361 DOI: 10.1080/17476348.2023.2205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Several immunological alterations that occur during pulmonary diseases often mimic alterations observed in the aged lung. From the molecular perspective, pulmonary diseases and aging partake in familiar mechanisms associated with significant dysregulation of the immune systems. Here, we summarized the findings of how aging alters immunity to respiratory conditions to identify age-impacted pathways and mechanisms that contribute to the development of pulmonary diseases. AREAS COVERED The current review examines the impact of age-related molecular alterations in the aged immune system during various lung diseases, such as COPD, IPF, Asthma, and alongside many others that could possibly improve on current therapeutic interventions. Moreover, our increased understanding of this phenomenon may play a primary role in shaping immunomodulatory strategies to boost outcomes in the elderly. Here, the authors present new insights into the context of lung-related diseases and describe the alterations in the functioning of immune cells during various pulmonary conditions altered with age. EXPERT OPINION The expert opinion provided the concepts on how aging alters immunity during pulmonary conditions, and suggests the associated mechanisms during the development of lung diseases. As a result, it becomes important to comprehend the complex mechanism of aging in the immune lung system.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
27
|
Lara-Aguilar V, Valle-Millares D, Crespo-Bermejo C, Grande-García S, Llamas-Adán M, Cortijo-Alfonso ME, Martín-Carbonero L, Domínguez L, Ryan P, de Los Santos I, Bartolomé-Sánchez S, Vidal-Alcántara EJ, Jiménez-Sousa MA, Fernández-Rodríguez A, Briz V. Dynamics of cellular senescence markers after HCV elimination spontaneously or by DAAs in people living with HIV. Biomed Pharmacother 2023; 162:114664. [PMID: 37031491 DOI: 10.1016/j.biopha.2023.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND We identified that acute or chronic Hepatitis C (HCV) infection in people living with HIV (PLWHIV) results in different senescence profiles. However, variations in these profiles after HCV elimination, spontaneously or with direct-acting antivirals (DAAs), remain unclear. METHODS Longitudinal observational study (48 weeks) in 70 PLWHIV: 23 PLWHIV with active HCV-chronic infection (CHC) before and after HCV eradication with DAAs, 12 PLWHIV who spontaneously clarify the HCV (SC), and 35 controls (HIV). Oxidative stress was quantified at DNA, lipid, protein, and nitrate levels, as well as the antioxidant capacity and glutathione enzyme. The replicative senescence was evaluated by relative telomere length measurement by PCR and twenty-six factors related to Senescence-Associated Secretory Phenotype (SASP) were characterized by Luminex. Differences in senescence markers was evaluated by generalized linear models. RESULTS During follow-up, the SC group achieved a significant improvement in glutathione enzyme and lipid peroxidation. The secretion of SASP markers increased but was still lower than that of the HIV group. Overall, the CHC group reduced the levels of oxidative stress and SASP markers to levels like those of the HIV group. No significant differences in telomere shortening were observed between groups. CONCLUSIONS As the time since spontaneous resolution of HCV infection increased, patients had an improved senescence profile compared to the HIV group. Elimination of chronic HCV infection by DAAs led to a partial improvement of the senescent profile by restoring oxidative stress levels. However, although some SASP markers reached levels like those of the HIV group, others remained altered.
Collapse
Affiliation(s)
- Violeta Lara-Aguilar
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Celia Crespo-Bermejo
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Sergio Grande-García
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Manuel Llamas-Adán
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - María Engracia Cortijo-Alfonso
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | | | - Lourdes Domínguez
- HIV Unit, Internal Medicine Service, Biomedical Research Institute of the Doce de Octubre Hospital (imas12), Madrid, Spain; King's College London University, UK
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain; Department of Infectious Diseases, HIV/Hepatitis Internal Medicine Service, Infanta Leonor University Hospital, Madrid, Spain
| | - Ignacio de Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine-Infectious Diseases, Hospital Universitario de La Princesa, Madrid, Spain
| | - Sofía Bartolomé-Sánchez
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Pneumococcus Unit, Vaccine-Preventable Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - María Angeles Jiménez-Sousa
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain; Viral Infection and Immunity Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain; Viral Infection and Immunity Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain.
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
28
|
Mosaddeghi P, Farahmandnejad M, Zarshenas MM. The role of transposable elements in aging and cancer. Biogerontology 2023:10.1007/s10522-023-10028-z. [PMID: 37017895 DOI: 10.1007/s10522-023-10028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Transposable elements (TEs) constitute a large portion of the human genome. Various mechanisms at the transcription and post-transcription levels developed to suppress TE activity in healthy conditions. However, a growing body of evidence suggests that TE dysregulation is involved in various human diseases, including age-related diseases and cancer. In this review, we explained how sensing TEs by the immune system could induce innate immune responses, chronic inflammation, and following age-related diseases. We also noted that inflammageing and exogenous carcinogens could trigger the upregulation of TEs in precancerous cells. Increased inflammation could enhance epigenetic plasticity and upregulation of early developmental TEs, which rewires the transcriptional networks and gift the survival advantage to the precancerous cells. In addition, upregulated TEs could induce genome instability, activation of oncogenes, or inhibition of tumor suppressors and consequent cancer initiation and progression. So, we suggest that TEs could be considered therapeutic targets in aging and cancer.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Martinelli RP, Rayego-Mateos S, Alique M, Márquez-Expósito L, Tejedor-Santamaria L, Ortiz A, González-Parra E, Ruiz-Ortega M. Vitamin D, Cellular Senescence and Chronic Kidney Diseases: What Is Missing in the Equation? Nutrients 2023; 15:1349. [PMID: 36986078 PMCID: PMC10056834 DOI: 10.3390/nu15061349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
As life expectancy increases in many countries, the prevalence of age-related diseases also rises. Among these conditions, chronic kidney disease is predicted to become the second cause of death in some countries before the end of the century. An important problem with kidney diseases is the lack of biomarkers to detect early damage or to predict the progression to renal failure. In addition, current treatments only retard kidney disease progression, and better tools are needed. Preclinical research has shown the involvement of the activation of cellular senescence-related mechanisms in natural aging and kidney injury. Intensive research is searching for novel treatments for kidney diseases as well as for anti-aging therapies. In this sense, many experimental shreds of evidence support that treatment with vitamin D or its analogs can exert pleiotropic protective effects in kidney injury. Moreover, vitamin D deficiency has been described in patients with kidney diseases. Here, we review recent evidence about the relationship between vitamin D and kidney diseases, explaining the underlying mechanisms of the effect of vitamin D actions, with particular attention to the modulation of cellular senescence mechanisms.
Collapse
Affiliation(s)
- Romina P. Martinelli
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Matilde Alique
- Ricors2040, 28029 Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Ricors2040, 28029 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Emilio González-Parra
- Ricors2040, 28029 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| |
Collapse
|
30
|
Gupta K, Mathew AB, Chakrapani H, Saini DK. H 2S contributed from CSE during cellular senescence suppresses inflammation and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119388. [PMID: 36372112 DOI: 10.1016/j.bbamcr.2022.119388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.
Collapse
Affiliation(s)
- Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abraham Binoy Mathew
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Center for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
31
|
Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:115-158. [PMID: 36707199 DOI: 10.1016/bs.apcsb.2022.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular senescence was first described as a state characterized by telomere shortening, resulting in limiting cell proliferation in aging. Apart from this type of senescence, which is called replicative senescence, other senescence types occur after exposure to different stress factors. One of these types of senescence induced after adjuvant therapy (chemotherapy and radiotherapy) is called therapy-induced senescence. The treatment with chemotherapeutics induces cellular senescence in normal and cancer cells in the tumor microenvironment. Thus therapy-induced senescence in the cancer microenvironment is accepted one of the drivers of tumor progression. Recent studies have revealed that senescence-associated secretory phenotype induction has roles in pathological processes such as inducing epithelial-mesenchymal transition and promoting tumor vascularization. Thus senolytic drugs that specifically kill senescent cells and senomorphic drugs that inhibit the secretory activity of senescent cells are seen as a new approach in cancer treatment. Developing and discovering new senotherapeutic agents targeting senescent cells is also gaining importance. In this review, we attempt to summarize the signaling pathways regarding the metabolism, cell morphology, and organelles of the senescent cell. Furthermore, we also reviewed the effects of SASP in the cancer microenvironment and the senotherapeutics that have the potential to be used as adjuvant therapy in cancer treatment.
Collapse
|
32
|
Romaniello D, Gelfo V, Pagano F, Sgarzi M, Morselli A, Girone C, Filippini DM, D’Uva G, Lauriola M. IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy. Front Cell Dev Biol 2023; 10:1083743. [PMID: 36712972 PMCID: PMC9877625 DOI: 10.3389/fcell.2022.1083743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Federica Pagano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Daria Maria Filippini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele D’Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,*Correspondence: Mattia Lauriola,
| |
Collapse
|
33
|
Schäfer AL, Ruiz-Aparicio PF, Kraemer AN, Chevalier N. Crosstalk in the diseased plasma cell niche - the force of inflammation. Front Immunol 2023; 14:1120398. [PMID: 36895566 PMCID: PMC9989665 DOI: 10.3389/fimmu.2023.1120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paola Fernanda Ruiz-Aparicio
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Antoine N Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Melia F, Udomjarumanee P, Zinovkin D, Arghiani N, Pranjol MZI. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Front Oncol 2022; 12:975644. [PMID: 36059680 PMCID: PMC9434004 DOI: 10.3389/fonc.2022.975644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The disease still remains incurable and highly lethal in the advanced stage, representing a global health concern. Therefore, it is essential to understand the causes and risk factors leading to its development. Because age-related cellular senescence and type 2 diabetes (T2D) have been recognised as risk factors for CRC development, the recent finding that type 2 diabetic patients present an elevated circulating volume of senescent cells raises the question whether type 2 diabetes facilitates the process of CRC tumorigenesis by inducing premature cell senescence. In this review, we will discuss the mechanisms according to which T2D induces cellular senescence and the role of type 2 diabetes-induced cellular senescence in the pathogenesis and progression of colorectal cancer. Lastly, we will explore the current therapeutic approaches and challenges in targeting senescence.
Collapse
Affiliation(s)
- Francesco Melia
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Palita Udomjarumanee
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitry Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| | - Md Zahidul Islam Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| |
Collapse
|
35
|
Zileuton Alleviates Radiation-Induced Cutaneous Ulcers via Inhibition of Senescence-Associated Secretory Phenotype in Rodents. Int J Mol Sci 2022; 23:ijms23158390. [PMID: 35955523 PMCID: PMC9369445 DOI: 10.3390/ijms23158390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation-induced cutaneous ulcers are a challenging medical problem for patients receiving radiation therapy. The inhibition of cell senescence has been suggested as a prospective strategy to prevent radiation ulcers. However, there is no effective treatment for senescent cells in radiation ulcers. In this study, we investigated whether zileuton alleviated radiation-induced cutaneous ulcer by focusing on cell senescence. We demonstrate increased cell senescence and senescence-associated secretory phenotype (SASP) in irradiated dermal fibroblasts and skin tissue. The SASP secreted from senescent cells induces senescence in adjacent cells. In addition, 5-lipoxygenase (5-LO) expression increased in irradiated dermal fibroblasts and skin tissue, and SASP and cell senescence were regulated by 5-LO through p38 phosphorylation. Finally, the inhibition of 5-LO following treatment with zileuton inhibited SASP and mitigated radiation ulcers in animal models. Our results demonstrate that inhibition of SASP from senescent cells by zileuton can effectively mitigate radiation-induced cutaneous ulcers, indicating that inhibition of 5-LO might be a viable strategy for patients with this condition.
Collapse
|
36
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
37
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
38
|
Romaniello D, Gelfo V, Pagano F, Ferlizza E, Sgarzi M, Mazzeschi M, Morselli A, Miano C, D'Uva G, Lauriola M. Senescence-associated reprogramming induced by interleukin-1 impairs response to EGFR neutralization. Cell Mol Biol Lett 2022; 27:20. [PMID: 35236282 PMCID: PMC8903543 DOI: 10.1186/s11658-022-00319-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background EGFR targeting is currently the main treatment strategy for metastatic colorectal cancer (mCRC). Results of different clinical trials show that patients with wild-type KRAS and BRAF benefit from anti-EGFR monoclonal antibodies (moAbs) cetuximab (CTX) or panitumumab. Unfortunately, despite initial response, patients soon became refractory. Tumor heterogeneity and multiple escaping routes have been addressed as the main culprit, and, behind genomic alterations already described, changes in signaling pathways induced by drug pressure are emerging as mechanisms of acquired resistance. We previously reported an association between reduced sensitivity to CTX and increased expression of IL-1. However, how IL-1 mediates CTX resistance in mCRC is still unclear. Methods Under CTX treatment, the upregulation of IL-1R1 expression and a senescence program in sensitive colorectal cancer (CRC) cell lines is examined over time using qPCR, immunoblotting, and immunofluorescence. Results In sensitive CRC cells, IL-1 appeared responsible for a CTX-mediated G0 phase arrest. On the contrary, CTX-resistant CRC cells (CXR) maintained high mRNA levels of IL-1R1 and a post-senescence reprogramming, as indicated by increased SNAIL expression. Interestingly, treatment of CXR cells with a recombinant decoy, able to sequester the soluble form of IL-1, pushed CTX-resistant CRC cells back into a stage of senescence, thus blocking their proliferation. Our model suggests a trans-regulatory mechanism mediated by IL-1 on EGFR signaling. By establishing senescence and regulating EGFR activity and expression, IL-1 exposure ultimately bestows resistance. Conclusions To sum up, our findings point to the combined blockage of IL-1R and EGFR as a promising therapeutical approach to restore sensitivity to EGFR-targeting monoclonal antibodies. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00319-7.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Federica Pagano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Martina Mazzeschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy. .,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy.
| |
Collapse
|
39
|
Bayer AL, Pietruska J, Farrell J, McRee S, Alcaide P, Hinds PW. AKT1 Is Required for a Complete Palbociclib-Induced Senescence Phenotype in BRAF-V600E-Driven Human Melanoma. Cancers (Basel) 2022; 14:572. [PMID: 35158840 PMCID: PMC8833398 DOI: 10.3390/cancers14030572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a carefully regulated process of proliferative arrest accompanied by functional and morphologic changes. Senescence allows damaged cells to avoid neoplastic proliferation; however, the induction of the senescence-associated secretory phenotype (SASP) can promote tumor growth. The complexity of senescence may limit the efficacy of anti-neoplastic agents, such as CDK4/6 inhibitors (Cdk4/6i), that induce a senescence-like state in tumor cells. The AKT kinase family, which contains three isoforms that play both unique and redundant roles in cancer progression, is commonly hyperactive in many cancers including melanoma and has been implicated in the regulation of senescence. To interrogate the role of AKT isoforms in Cdk4/6i-induced cellular senescence, we generated isoform-specific AKT knockout human melanoma cell lines. We found that the CDK4/6i Palbociclib induced a form of senescence in these cells that was dependent on AKT1. We then evaluated the activity of the cGAS-STING pathway, recently implicated in cellular senescence, finding that cGAS-STING function was dependent on AKT1, and pharmacologic inhibition of cGAS had little effect on senescence. However, we found SASP factors to require NF-κB function, in part dependent on a stimulatory phosphorylation of IKKα by AKT1. In summary, we provide the first evidence of a novel, isoform-specific role for AKT1 in therapy-induced senescence in human melanoma cells acting through NF-κB but independent of cGAS.
Collapse
Affiliation(s)
- Abraham L. Bayer
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA; (A.L.B.); (P.A.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jodie Pietruska
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
| | - Jaymes Farrell
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Siobhan McRee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pilar Alcaide
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA; (A.L.B.); (P.A.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip W. Hinds
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; (J.P.); (J.F.); (S.M.)
- Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
40
|
Carleton N, Nasrazadani A, Gade K, Beriwal S, Barry PN, Brufsky AM, Bhargava R, Berg WA, Zuley ML, van Londen GJ, Marroquin OC, Thull DL, Mai PL, Diego EJ, Lotze MT, Oesterreich S, McAuliffe PF, Lee AV. Personalising therapy for early-stage oestrogen receptor-positive breast cancer in older women. THE LANCET. HEALTHY LONGEVITY 2022; 3:e54-e66. [PMID: 35047868 PMCID: PMC8765742 DOI: 10.1016/s2666-7568(21)00280-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Age is one of the most important risk factors for the development of breast cancer. Nearly a third of all breast cancer cases occur in older women (aged ≥70 years), with most cases being oestrogen receptor-positive (ER+). Such tumours are often indolent and unlikely to be the ultimate cause of death for older women, particularly when considering other comorbidities. This Review focuses on unique clinical considerations for screening, detection, and treatment regimens for older women who develop ER+ breast cancers-specifically, we focus on recent trends for de-implementation of screening, staging, surgery, and adjuvant therapies along the continuum of care. Additionally, we also review emerging basic and translational research that will further uncover the unique underlying biology of these tumours, which develop in the context of systemic age-related inflammation and changing hormone profiles. With prevailing trends of clinical de-implementation, new insights into mechanistic biology might provide an opportunity for precision medicine approaches to treat patients with well tolerated, low-toxicity agents to extend patients' lives with a higher quality of life, prevent tumour recurrences, and reduce cancer-related burdens.
Collapse
Affiliation(s)
- Neil Carleton
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Azadeh Nasrazadani
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Kristine Gade
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Sushil Beriwal
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Parul N Barry
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Adam M Brufsky
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Rohit Bhargava
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Wendie A Berg
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Margarita L Zuley
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - G J van Londen
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Oscar C Marroquin
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Darcy L Thull
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Phuong L Mai
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Emilia J Diego
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Michael T Lotze
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Steffi Oesterreich
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Priscilla F McAuliffe
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Adrian V Lee
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| |
Collapse
|
41
|
Tanabe S. Epithelial-Mesenchymal Transition and Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:1-49. [PMID: 36587300 DOI: 10.1007/978-3-031-12974-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a cellular phenotypic change from epithelial to mesenchymal-like features, is related to the resistance and metastasis of cancer stem cells (CSCs). Several signal transduction mechanisms induce EMT, which causes the gene expression alteration to induce the acquisition of resistance and metastasis in cancer. EMT is characterized with high gene expression of cadherin 2 (N-cadherin) and vimentin, and sparse cell-cell junction. The cells with EMT-phenotype have migration, metastasis and drug-resistance capacity, which are main characteristics of CSCs. It seems that the main population of CSCs exhibits EMT phenotype, whereas some populations consist of phenotypes other than EMT. In this chapter, EMT mechanism, phenotypic features of EMT and CSCs, signal transduction in EMT and CSCs, differences between EMT and CSCs, and the role of EMT in CSCs are described.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, 210-9501, Japan.
| |
Collapse
|
42
|
De Blander H, Morel AP, Senaratne AP, Ouzounova M, Puisieux A. Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers (Basel) 2021; 13:4561. [PMID: 34572787 PMCID: PMC8468602 DOI: 10.3390/cancers13184561] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.
Collapse
Affiliation(s)
- Hadrien De Blander
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
| | - Anne-Pierre Morel
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
| | - Aruni P. Senaratne
- UMR3664—Nuclear Dynamics, Development, Biology, Cancer, Genetics and Epigenetics, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Maria Ouzounova
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
43
|
Zhang JW, Zhang D, Yu BP. Senescent cells in cancer therapy: why and how to remove them. Cancer Lett 2021; 520:68-79. [PMID: 34237406 DOI: 10.1016/j.canlet.2021.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response that imposes a growth arrest on cancer and nonmalignant cells during cancer therapy. By secreting a plethora of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP), therapy-induced senescent cells can promote tumorigenesis. Moreover, the SASP from senescent cells is also able to drive therapy resistance and mediate many adverse effects of cancer therapy. Because senescent cell production often occurs during cancer therapy, it is important to carefully consider these potential detrimental effects. Senotherapy, which refers to selective removal of senescent cells, has been proposed as a promising adjuvant approach to eliminate the adverse effects of senescent cells. Thus, in this review we summarize in detail the mechanisms by which senescent cells contribute to tumorigenesis and therapeutic resistance. Also, we thoroughly discuss the potential strategies regarding how to effectively circumvent the undesirable effects of therapy-induced senescent cells.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, People's Republic of China
| | - Dan Zhang
- Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Bao-Ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
44
|
Chakrabarty A, Chakraborty S, Bhattacharya R, Chowdhury G. Senescence-Induced Chemoresistance in Triple Negative Breast Cancer and Evolution-Based Treatment Strategies. Front Oncol 2021; 11:674354. [PMID: 34249714 PMCID: PMC8264500 DOI: 10.3389/fonc.2021.674354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) is classically treated with combination chemotherapies. Although, initially responsive to chemotherapies, TNBC patients frequently develop drug-resistant, metastatic disease. Chemotherapy resistance can develop through many mechanisms, including induction of a transient growth-arrested state, known as the therapy-induced senescence (TIS). In this paper, we will focus on chemoresistance in TNBC due to TIS. One of the key characteristics of senescent cells is a complex secretory phenotype, known as the senescence-associated secretory proteome (SASP), which by prompting immune-mediated clearance of senescent cells maintains tissue homeostasis and suppresses tumorigenesis. However, in cancer, particularly with TIS, senescent cells themselves as well as SASP promote cellular reprograming into a stem-like state responsible for the emergence of drug-resistant, aggressive clones. In addition to chemotherapies, outcomes of recently approved immune and DNA damage-response (DDR)-directed therapies are also affected by TIS, implying that this a common strategy used by cancer cells for evading treatment. Although there has been an explosion of scientific research for manipulating TIS for prevention of drug resistance, much of it is still at the pre-clinical stage. From an evolutionary perspective, cancer is driven by natural selection, wherein the fittest tumor cells survive and proliferate while the tumor microenvironment influences tumor cell fitness. As TIS seems to be preferred for increasing the fitness of drug-challenged cancer cells, we will propose a few tactics to control it by using the principles of evolutionary biology. We hope that with appropriate therapeutic intervention, this detrimental cellular fate could be diverted in favor of TNBC patients.
Collapse
|
45
|
Hyperlipidemic Conditions Impact Force-Induced Inflammatory Response of Human Periodontal Ligament Fibroblasts Concomitantly Challenged with P. gingivalis-LPS. Int J Mol Sci 2021; 22:ijms22116069. [PMID: 34199865 PMCID: PMC8200083 DOI: 10.3390/ijms22116069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
In obese patients, enhanced serum levels of free fatty acids (FFA), such as palmitate (PA) or oleate (OA), are associated with an increase in systemic inflammatory markers. Bacterial infection during periodontal disease also promotes local and systemic low-grade inflammation. How both conditions concomitantly impact tooth movement is largely unknown. Thus, the aim of this study was to address the changes in cytokine expression and the secretion of human periodontal ligament fibroblasts (HPdLF) due to hyperlipidemic conditions, when additionally stressed by bacterial and mechanical stimuli. To investigate the impact of obesity-related hyperlipidemic FFA levels on HPdLF, cells were treated with 200 µM PA or OA prior to the application of 2 g/cm2 compressive force. To further determine the additive impact of bacterial infection, HPdLF were stimulated with lipopolysaccharides (LPS) obtained from Porphyromonas gingivalis. In mechanically compressed HPdLF, PA enhanced COX2 expression and PGE2 secretion. When mechanically stressed HPdLF were additionally stimulated with LPS, the PGE2 and IL6 secretion, as well as monocyte adhesion, were further increased in PA-treated cultures. Our data emphasize that a hyperlipidemic condition enhances the susceptibility of HPdLF to an excessive inflammatory response to compressive forces, when cells are concomitantly exposed to bacterial components.
Collapse
|
46
|
Bornes L, Belthier G, van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med 2021; 10:jcm10112403. [PMID: 34072345 PMCID: PMC8197992 DOI: 10.3390/jcm10112403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.
Collapse
|
47
|
Thompson EL, Hu JJ, Niedernhofer LJ. The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers (Basel) 2021; 13:2241. [PMID: 34066966 PMCID: PMC8125319 DOI: 10.3390/cancers13092241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAFV600 mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma.
Collapse
Affiliation(s)
- Elizabeth L. Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiayi J. Hu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Dey DK, Kang SC. CopA3 peptide induces permanent cell-cycle arrest in colorectal cancer cells. Mech Ageing Dev 2021; 196:111497. [PMID: 33957217 DOI: 10.1016/j.mad.2021.111497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
Cell-cycle arrest reflects an accumulation of responses to DNA damage that sequentially affects cell growth and division. Herein, we analyzed the effect of the 9-mer dimer defensin-like peptide, CopA3, against colorectal cancer cell growth and proliferation in a dose-dependent manner upon 96 h of treatment. As observed, CopA3 treatment significantly affected cancer cell growth, reduced colony formation ability, increased the number of SA-β-Gal positive cells, and remarkably reduced Ki67 protein expression. Notably, in HCT-116 cells, CopA3 (5 μM) treatment effectively increased oxidative stress and, as a result, amplified the endogenous ROS, mitochondrial ROS, and NO content in the cells, which further activated the DNA damage response and caused cell-cycle arrest at the G1 phase. The prolonged cell-cycle arrest elevated the release of inflammatory cytokines in the cell supernatant. Nevertheless, mechanistically, NAC treatment effectively reversed the CopA3 effect and significantly reduced the oxidative stress; subsequently rescuing the cells from G1 phase arrest. Overall, CopA3 treatment can inhibit the growth and proliferation of colorectal cancer cells by inducing cell-cycle arrest through the ROS-mediated pathway.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
49
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis. Cell Mol Life Sci 2021; 78:4521-4544. [PMID: 34019103 PMCID: PMC8195904 DOI: 10.1007/s00018-021-03798-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a process that can prevent tumour development in a cell autonomous manner by imposing a stable cell cycle arrest after oncogene activation. Paradoxically, senescence can also promote tumour growth cell non-autonomously by creating a permissive tumour microenvironment that fuels tumour initiation, progression to malignancy and metastasis. In a pituitary tumour known as adamantinomatous craniopharyngioma (ACP), cells that carry oncogenic β-catenin mutations and overactivate the WNT signalling pathway form cell clusters that become senescent and activate a senescence-associated secretory phenotype (SASP). Research in mouse models of ACP has provided insights into the function of the senescent cell clusters and revealed a critical role for SASP-mediated activities in paracrine tumour initiation. In this review, we first discuss this research on ACP and subsequently explore the theme of paracrine tumourigenesis in other tumour models available in the literature. Evidence is accumulating supporting the notion that paracrine signalling brought about by senescent cells may underlie tumourigenesis across different tumours and cancer models.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Research and Teaching Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
50
|
Ospina-Muñoz N, Vernot JP. Partial acquisition of stemness properties in tumorspheres obtained from interleukin-8-treated MCF-7 cells. Tumour Biol 2020; 42:1010428320979438. [PMID: 33325322 DOI: 10.1177/1010428320979438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interleukin-8 is an important regulator of the tumor microenvironment, promoting the epithelial-mesenchymal transition and the acquisition of stem-like cell properties in cancer cells. The tumorsphere-formation assay has been used for the identification of cancer stem cell. Interleukin-8 induces the formation of larger tumorspheres in Michigan Cancer Foundation-7 (MCF-7) cells, suggesting cancer stem cell enrichment. In this work, we aimed to study the phenotypic and functional characteristics of the cells present within the tumorspheres of MCF-7 cells previously treated with interleukin-8. MCF-7 cells treated for 5 days or not with this cytokine were further cultivated in ultralow attachment plates for another 5 days to allow tumorspheres formation. We showed that the enhanced sphere formation by MCF-7 cells was not a consequence of higher cell proliferation by interleukin-8 stimulation. Despite maintaining an epithelial-mesenchymal transition phenotype with the presence of epithelial and mesenchymal markers, basic stemness properties were impaired in tumorspheres and in those treated with interleukin-8, while others were increased. Self-renewal capacity was increased in interleukin-8-treated cells only in the first generation of tumorspheres but was not sustained in consecutive assays. Accordingly, self-renewal and reprogramming gene expression, differentiation capacity to adipocytes, and clonogenicity were also impaired. We showed also that tumorspheres were enriched in differentiated luminal cells (EpCAM+/CD49f-). Nevertheless, cells were more quiescent and maintain a partial epithelial-mesenchymal transition, consistent with their increased resistance to Paclitaxel and Doxorubicin. They also presented higher migration and interleukin-8-directed invasion. Therefore, the breast cancer cell line MCF-7, having a low stemness index, might partially acquire some stem-like cell attributes after interleukin-8 stimulation, increasing its aggressiveness.
Collapse
Affiliation(s)
- Natalia Ospina-Muñoz
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia.,Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|