1
|
Bogle R, Patrick MT, Sreeskandarajan S, Gharaee-Kermani M, Zhang H, Li Q, Zhou R, Ma F, Kahlenberg JM, Plazyo O, Elder JT, Billi AC, Gudjonsson JE, Tsoi LC. Profiling Long Noncoding RNA in Psoriatic Skin Using Single-Cell RNA Sequencing. J Invest Dermatol 2025; 145:1060-1069.e7. [PMID: 39342985 DOI: 10.1016/j.jid.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
The expressions of long noncoding RNAs (lncRNAs) and their roles in epidermal differentiation have been previously defined using bulk RNA sequencing. Despite their tissue-specific expression profiles, most lncRNAs are not well-annotated at the single-cell level. In this study, we evaluated the use of single-cell RNA sequencing to profile and characterize lncRNAs using data from 6 patients with psoriasis with paired uninvolved and lesional psoriatic skin. Despite their overall lower expression, we were able to detect >7000 skin-expressing lncRNAs and their cellular sources. Differential gene expression analysis revealed 137 differentially expressed lncRNAs in lesional psoriasis skin and identified 169 cell-type-specific lncRNAs. Keratinocytes had the highest number of differentially expressed lncRNA in psoriatic skin, which we validated using spatial transcriptomic data. We further showed that expression of the keratinocyte-specific lncRNA, AC020916.1, upregulated in lesional skin, is significantly correlated with expressions of genes participating in cell proliferation/epidermal differentiation, including SPRR2E and transcription factor ZFP36, particularly in the psoriatic skin. Our study highlights the potential for using single-cell RNA sequencing to profile skin-expressing lncRNA transcripts and to infer their cellular origins, providing a crucial approach that can be applied to the study of other inflammatory skin conditions.
Collapse
Affiliation(s)
- Rachael Bogle
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sutharzan Sreeskandarajan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Haihan Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Qinmengge Li
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruiwen Zhou
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Huang J, Cheng X, Wang C, Gong F. Protein regulator of cytokinesis 1 regulates autophagy in hepatitis B virus‑associated liver cancer development. Oncol Rep 2025; 53:36. [PMID: 39930820 PMCID: PMC11795243 DOI: 10.3892/or.2025.8869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/07/2025] [Indexed: 02/14/2025] Open
Abstract
Hepatitis B protein x (HBx) is considered a critical contributor to hepatitis B virus (HBV)‑associated liver cancer development. Protein regulator of cytokinesis 1 (PRC1) has been implicated in hepatocarcinogenesis. However, the clinical relevance, biological functions and related regulatory mechanisms of PRC1 in HBV‑associated liver cancer have not yet been clarified. PRC1 expression profiles in liver cancer were obtained from The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis database and through reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry assays. A series of in vitro and in vivo assays were used to explore the function of the PRC1 gene and the possible mechanisms through which it affects HBV‑associated liver cancer. PRC1 was overexpressed in HBV‑positive liver cancer tissues. Functional studies in vitro demonstrated that HBx induced the expression of the PRC1 gene, which promoted cell autophagy and enhanced viability, invasion and migration. Furthermore, the knockdown of the PRC1 gene or treatment with the autophagosome inhibitor 3‑methyladenine blocked the HBx‑induced autophagic flux, disrupted the formation of autophagosomes, and promoted cell apoptosis. Liver cancer xenograft animal model experiments revealed that inhibition of autophagy by 3‑methyladenine or silencing of the PRC1 gene attenuated HBx‑induced malignant behavior in vivo. The absence of autophagy inhibited the expression of Bcl‑2, induced the expression of Bax, and regulated the levels of Th1 and Th2 cytokines. These results elucidate a mechanism wherein the PRC1 gene participates in the occurrence and development of HBV‑associated liver cancer by modulating autophagy. PRC1 could be a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Infection, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang157000, P.R. China
| | - Xianzhi Cheng
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Chuang Wang
- Department of Neurosurgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Fangyan Gong
- Department of Clinical Laboratory, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
3
|
Wang F, Yuan C, Lu Y, Wu M, Wu H, Liu Y, Yang Y. Glabridin inhibits proliferation and migration in hepatocellular carcinoma by regulating multi-targets. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119022. [PMID: 39510424 DOI: 10.1016/j.jep.2024.119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza uralensis Fisch. (GC) is widely utilized in traditional Chinese medicine (TCM) for its properties in Qi tonification, heat clearing, and detoxification. Within TCM theory, Qi is also implicated in tumor development. Numerous TCM formulas containing GC are used for their anti-tumor effects, and contemporary pharmacological research has demonstrated that ethyl acetate extracts (EAe) of GC, along with potential bioactive compounds like glabridin (Gla), possess anti-tumor properties. Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and a major challenge to global healthcare, with high incidence and poor prognosis. Nevertheless, the effects and mechanisms of action of Gla in inhibiting HCC have not been extensively studied. AIM OF STUDY This study aims to elucidate the effects and mechanisms of action of Gla against HCC by in vitro and in vivo experiments. METHODS The inhibitory effects of ethyl acetate extract (EAe) of GC and its bioactive compounds on HCC were studied using a drug-cell interaction system equipped with UPLC-MS/MS and high-throughput screening methods in vitro. RNA sequencing (RNA-seq) and bioinformatics technologies were employed to detect the differentially expressed genes (DEGs) and pathways in HepG2 cells. The findings were further validated using quantitative real-time PCR (qPCR) and Western blot (WB) assays. Additionally, an in vivo tumor-bearing mouse model established with H22 cells was utilized to examine alterations in tumor tissues via hematoxylin-eosin (HE) staining. Immunohistochemistry was used to assess the protein expression levels of hub targets within each group. RESULTS Both in vitro and in vivo experiments demonstrated the effects of EAe against HCC, identifying Gla was one of its main bioactive compounds. Integration of RNA-seq data with clinical databases revealed that Gla inhibited HCC by up-regulating the expression levels of DUSP5, ZFP36, KLF10, and NR4A1, while down-regulating RMI2 expression. These findings were further validated by Gene Expression Omnibus (GEO), qPCR, WB and immunohistochemistry assays. CONCLUSIONS Gla regulates the expression levels of DUSP5, ZFP36, KLF10, NR4A1, and RMI2 to against HCC, providing valuable insights for the application of Gla in HCC treatment.
Collapse
Affiliation(s)
- Fei Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chong Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yi Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Huanggang Normal University, Huanggang, 438000, China.
| | - Mojiao Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Hezhen Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Yanfang Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
4
|
Künzel SH, Pohlmann D, zur Bonsen L, Krappitz M, Zeitz O, Joussen AM, Dubrac A, Künzel SE. Transcriptome Analysis of Choroidal Endothelium Links Androgen Receptor Role to Central Serous Chorioretinopathy. Eur J Ophthalmol 2024; 34:1532-1540. [PMID: 38263930 PMCID: PMC11408951 DOI: 10.1177/11206721241226735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Central Serous Chorioretinopathy (CSCR) manifests as fluid accumulation between the neurosensory retina and the retinal pigment epithelium (RPE). Elevated levels of steroid hormones have been implicated in CSCR pathogenesis. This investigation aims to delineate the gene expression patterns of CSCR-associated risk and steroid receptors across human choroidal cell types and RPE cells to discern potential underlying mechanisms. METHODS This study utilized a comprehensive query of transcriptomic data derived from non-pathological human choroid and RPE cells. FINDINGS CSCR-associated genes such as PTPRB, CFH, and others are predominantly expressed in the choroidal endothelium as opposed to the RPE. The androgen receptor, encoded by the AR gene, demonstrates heightened expression in the macular endothelium compared to peripheral regions, unlike other steroid receptor genes. AR-expressing endothelial cells display an augmented responsiveness to Transforming growth factor beta (TGF-β), indicating a propensity towards endothelial to mesenchymal transition (endMT) transcriptional profiling. INTERPRETATION These results highlight the proclivity of CSCR to manifest primarily within the choroidal vasculature rather than the RPE, suggesting its categorization as a vascular eye disorder. This study accentuates the pivotal role of androgenic steroids, in addition to glucocorticoids. The observed linkage to TGF-β-mediated endMT provides a potential mechanistic insight into the disease's etiology.
Collapse
Affiliation(s)
| | - Dominika Pohlmann
- Department of Ophthalmology, Charité University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lynn zur Bonsen
- Department of Ophthalmology, Charité University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matteus Krappitz
- Department of Nephrology and Medical Intensive Care, Charité University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Zeitz
- Department of Ophthalmology, Charité University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandre Dubrac
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| | - Steffen E Künzel
- Department of Ophthalmology, Charité University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Wang L, Wang H. The putative role of ferroptosis in gastric cancer: a review. Eur J Cancer Prev 2023; 32:575-583. [PMID: 37318883 PMCID: PMC10538621 DOI: 10.1097/cej.0000000000000817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is a unique cell death modality triggered by iron-dependent lipid peroxidation, with cysteine metabolism and glutathione-dependent antioxidant defence responses as the primary triggering mechanisms. Ferroptosis is an independent tumour suppression mechanism and has been implicated in various disorders. In tumourigenesis, ferroptosis plays a dual role in promoting and inhibiting tumours. P53, NFE2L2, BAP1, HIF, and other tumour suppressor genes regulate ferroptosis, releasing damage-associated molecular patterns or lipid metabolites to influence cellular immune responses. Ferroptosis is also involved in tumour suppression and metabolism. The combination of amino acid, lipid, and iron metabolism is involved in the initiation and execution of ferroptosis, and metabolic regulatory mechanisms also play roles in malignancies. Most investigations into ferroptosis in gastric cancer are concentrated on predictive models, not the underlying processes. This review investigates the underlying mechanisms of ferroptosis, tumour suppressor genes, and the tumour microenvironment.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, Second Affiliated Hospital of School of Medicine and
| | - Haibin Wang
- Department of Radiology, Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Pan Z, Yun H, Xiao Y, Tong F, Liu G, Zhang G, Han J. MiR-934 Exacerbates Malignancy of Gastric Cancer Cells by Targeting ZFP36. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1720-1729. [PMID: 37744530 PMCID: PMC10512137 DOI: 10.18502/ijph.v52i8.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 09/26/2023]
Abstract
Background In order to explore new targets for the treatment of gastric cancer (GC), we investigated the regulatory mechanism of miR-934 in the malignant phenotype of gastric cancer. Methods The miRNA and mRNA expressions were determined by RT-qPCR, and protein levels were quantified by western blotting assay. Malignancy of AGS cell line was evaluated by MTT, flow cytometry, wound healing and Transwell assays. The putative binding site between miR-934 and ZFP36 was validated using luciferase reporter assay. Immunohistochemistry (IHC) assay was used to visualize the ZFP36-positive cells in the xenograft sections. All experiments were conducted in General Surgery Laboratory of Nanjing Red Cross Hospital Jiangsu Province, China from June 2019 to June 2021. Results GC tissues and cell lines showed notably higher levels of miR-934. Overexpression of miR-934 promoted cell viability, migration and invasion, while inhibited cell apoptosis of GC cells. ZFP36 was predicted and verified to be the target of miR-934 and low protein levels of ZFP36 were observed in GC tissues. The ZFP36 protein expressions were suppressed by miR-934 overexpression, while were facilitated by miR-934 inhibition. Furthermore, the carcinogenic functions of miR-934 were partially reversed after ZFP36 overexpression. The results of in vivo experiments further demonstrated that miR-934 promoted tumor growth and repressed the protein expression of ZFP36. Conclusion miR-934 served as a tumor promoter in GC via targeting ZFP36, and ZFP36 overexpression could efficiently relieve malignant phenotypes caused by miR-934, which prompted an exploitable molecular target for GC treatment.
Collapse
Affiliation(s)
- Zhicheng Pan
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Huazhong Yun
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Yun Xiao
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Fei Tong
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Guodong Liu
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Ge Zhang
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Jianbo Han
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| |
Collapse
|
7
|
Targeting the "undruggable": RNA-binding proteins in the spotlight in cancer therapy. Semin Cancer Biol 2022; 86:69-83. [PMID: 35772609 DOI: 10.1016/j.semcancer.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Tumors refractory to conventional therapy belong to specific subpopulations of cancer cells, which have acquired a higher number of mutations/epigenetic changes than the majority of cancer cells. This property provides them the ability to become resistant to therapy. Aberrant expression of certain RNA-binding proteins (RBPs) can regulate the sensitivity of tumor cells to chemotherapeutic drugs by binding to specific regions present in the 3´-UTR of certain mRNAs to promote or repress mRNA translation or by interacting with other proteins (including RBPs) and non-coding RNAs that are part of ribonucleoprotein complexes. In particular, an increasing interest in the RBPs involved in chemoresistance has recently emerged. In this review, we discuss how RBPs are not only affected by chemotherapeutic treatments, but also play an active role in therapeutic responses via the direct modulation of crucial cancer-related proteins. A special focus is being placed on the development of therapeutic strategies targeting these RBPs.
Collapse
|
8
|
ZFP36 Inhibits Tumor Progression of Human Prostate Cancer by Targeting CDK6 and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3611540. [PMID: 36111167 PMCID: PMC9470309 DOI: 10.1155/2022/3611540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Background The expression of ZFP36 in previous study was reduced in prostate cancer (PCa) tissues as compared to benign prostate tissues, indicating the potential of ZFP36 as an auxiliary marker for PCa. Further evaluation was conducted in clinical samples for in vitro and in vivo experiments, to prove the potential possibility that ZFP36 dysregulation participated in the malignant phenotype of PCa, to determine its potential mechanism for tumor regulation, and to provide a new theoretical basis for gene therapy of PCa. Methods First, the expression of ZFP36 in prostate tissue and PCa tissue was explored, and the relationship between ZFP36 and clinical features of PCa patients was illustrated. Subsequently, the impact of ZFP36 on the biology of PCa cells and relevant downstream pathways of ZFP36's biological impact on PCa were elucidated. Finally, whether oxidative stress mediated the regulation of ZFP36 in PCa was verified by the determination of oxidative stress-related indicators and bioinformatics analysis. Results The downregulation of ZFP36 in PCa tissue had a positive correlation with high Gleason scores, advanced pathological stage, and biochemical recurrence. ZFP36 was identified as an independent prognostic factor for PCa patients' BCR-free survival (P = 0.022) by survival analysis. Following a subsequent experiment of function gain and loss, ZFP36 inhibited the proliferation, invasion, and migration in DU145 and 22RV1 cells and inhibits tumor growth in the mouse model. Additionally, high-throughput sequencing screened out CDK6 as the downstream target gene of ZFP36. Western blot/Q-PCR demonstrated that overexpression of ZFP36 could reduce the expression of CDK6 at both cellular and animal levels, and the dual-luciferase experiment and RIP experiment proved that CDK6 was the downstream target of ZFP36, indicating that CDK6 was a downstream target of ZFP36, which mediated tumor cell growth by blocking cell cycle at the G1 stage. Furthermore, ZFP36 inhibited oxidative stress in PCa cells. Conclusions In PCa, ZFP36 might be a tumor suppressor that regulated growth, invasion, and migration of PCa cells. The lately discovered ZFP36-CDK6 axis demonstrated the molecular mechanism of PCa progression to a certain extent which might act as a new possible therapeutic target of PCa therapy.
Collapse
|
9
|
Chen Q, Liu L, Ni S. Screening of ferroptosis-related genes in sepsis-induced liver failure and analysis of immune correlation. PeerJ 2022; 10:e13757. [PMID: 35923893 PMCID: PMC9341447 DOI: 10.7717/peerj.13757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Purpose Sepsis-induced liver failure is a kind of liver injury with a high mortality, and ferroptosis plays a key role in this disease. Our research aims to screen ferroptosis-related genes in sepsis-induced liver failure as targeted therapy for patients with liver failure. Methods Using the limma software, we analyzed the differentially expressed genes (DEGs) in the GSE60088 dataset downloaded from the Gene Expression Omnibus (GEO) database. Clusterprofiler was applied for enrichment analysis of DEGs enrichment function. Then, the ferroptosis-related genes of the mice in the FerrDb database were crossed with DEGs. Sepsis mice model were prepared by cecal ligation and perforation (CLP). ALT and AST in the serum of mice were measured using detection kit. The pathological changes of the liver tissues in mice were observed by hematoxylin-eosin (H & E) staining. We detected the apoptosis of mice liver tissues using TUNEL. The expression of Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36 were detected by qRT-PCR. Results DEGs analysis showed 136 up-regulated and 45 down-regulated DEGs. Meanwhile, we found that the up-regulated DEGs were enriched in pathways including the cytokine biosynthesis process while the down-regulated DEGs were enriched in pathways such as organic hydroxy compound metabolic process. In this study, seven genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36) were obtained through the intersection of FerrDb database and DEGs. However, immune infiltration analysis revealed that ferroptosis-related genes may promote the development of liver failure through B cells and natural killer (NK) cells. Finally, it was confirmed by the construction of septic liver failure mice model that ferroptosis-related genes of Hmox1, Slc3a2, Jun and Zfp36 were significantly correlated with liver failure and were highly expressed. Conclusion The identification of ferroptosis-related genes Hmox1, Slc3a2, Jun and Zfp36 in the present study contribute to our understanding of the molecular mechanism of sepsis-induced liver failure, and provide candidate targets for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Qingli Chen
- Department of Emergency Medicine, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| | - Luxiang Liu
- Department of Infectious Disease, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| | - Shuangling Ni
- Department of Infectious Disease, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| |
Collapse
|
10
|
Kashikar R, Kotha AK, Shah S, Famta P, Singh SB, Srivastava S, Chougule MB. Advances in nanoparticle mediated targeting of RNA binding protein for cancer. Adv Drug Deliv Rev 2022; 185:114257. [PMID: 35381306 DOI: 10.1016/j.addr.2022.114257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
RNA binding proteins (RBPs) enact a very crucial part in the RNA directive processes. Atypical expression of these RBPs affects many steps of RNA metabolism, majorly altering its expression. Altered expression and dysfunction of RNA binding proteins lead to cancer progression and other diseases. We enumerate various available interventions, and recent findings focused on targeting RBPs for cancer therapy and diagnosis. The treatment, sensitization, chemoprevention, gene-mediated, and virus mediated interventions were studied to treat and diagnose cancer. The application of passively and actively targeted lipidic nanoparticles, polymeric nanoparticles, virus-based particles, and vaccine-based immunotherapy for the delivery of therapeutic agent/s against cancer are discussed. We also discuss the formulation aspect of nanoparticles for achieving delivery at the site of action and ongoing clinical trials targeting RBPs.
Collapse
|
11
|
Kong F, Ye S, Zhong Z, Zhou X, Zhou W, Liu Z, Lan J, Xiong Y, Ye Q. Single-Cell Transcriptome Analysis of Chronic Antibody-Mediated Rejection After Renal Transplantation. Front Immunol 2022; 12:767618. [PMID: 35111153 PMCID: PMC8801944 DOI: 10.3389/fimmu.2021.767618] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Renal transplantation is currently the most effective treatment for end-stage renal disease. However, chronic antibody-mediated rejection (cABMR) remains a serious obstacle for the long-term survival of patients with renal transplantation and a problem to be solved. At present, the role and mechanism underlying immune factors such as T- and B- cell subsets in cABMR after renal transplantation remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) of peripheral blood monocytes (PBMCs) from cABMR and control subjects was performed to define the transcriptomic landscape at single-cell resolution. A comprehensive scRNA-seq analysis was performed. The results indicated that most cell types in the cABMR patients exhibited an intense interferon response and release of proinflammatory cytokines. In addition, we found that the expression of MT-ND6, CXCL8, NFKBIA, NFKBIZ, and other genes were up-regulated in T- and B-cells and these genes were associated with pro-inflammatory response and immune regulation. Western blot and qRT-PCR experiments also confirmed the up-regulated expression of these genes in cABMR. GO and KEGG enrichment analyses indicated that the overexpressed genes in T- and B-cells were mainly enriched in inflammatory pathways, including the TNF, IL-17, and Toll-like receptor signaling pathways. Additionally, MAPK and NF-κB signaling pathways were also involved in the occurrence and development of cABMR. This is consistent with the experimental results of Western blot. Trajectory analysis assembled the T-cell subsets into three differentiation paths with distinctive phenotypic and functional prog rams. CD8 effector T cells and γδ T cells showed three different differentiation trajectories, while CD8_MAI T cells and naive T cells primarily had two differentiation trajectories. Cell-cell interaction analysis revealed strong T/B cells and neutrophils activation in cABMR. Thus, the study offers new insight into pathogenesis and may have implications for the identification of novel therapeutic targets for cABMR.
Collapse
Affiliation(s)
- Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Shaojun Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Xin Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Jianan Lan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
12
|
Rogoyski O, Gerber AP. RNA-binding proteins modulate drug sensitivity of cancer cells. Emerg Top Life Sci 2021; 5:681-685. [PMID: 34328175 PMCID: PMC8726047 DOI: 10.1042/etls20210193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
As our understanding of the complex network of regulatory pathways for gene expression continues to grow, avenues of investigation for how these new findings can be utilised in therapeutics are emerging. The recent growth of interest in the RNA binding protein (RBP) interactome has revealed it to be rich in targets linked to, and causative of diseases. While this is, in and of itself, very interesting, evidence is also beginning to arise for how the RBP interactome can act to modulate the response of diseases to existing therapeutic treatments, especially in cancers. Here we highlight this topic, providing examples of work that exemplifies such modulation of chemotherapeutic sensitivity.
Collapse
Affiliation(s)
- Oliver Rogoyski
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
13
|
Albano F, Tucci V, Blackshear PJ, Reale C, Roberto L, Russo F, Marotta P, Porreca I, Colella M, Mallardo M, de Felice M, Ambrosino C. ZFP36L2 Role in Thyroid Functionality. Int J Mol Sci 2021; 22:9379. [PMID: 34502288 PMCID: PMC8431063 DOI: 10.3390/ijms22179379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.
Collapse
Affiliation(s)
- Francesco Albano
- IEOS-CNR, 80131 Naples, Italy;
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Valeria Tucci
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Carla Reale
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Luca Roberto
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Filomena Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Pina Marotta
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Immacolata Porreca
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario de Felice
- IEOS-CNR, 80131 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
14
|
Identification and validation of a novel ferroptosis-related gene model for predicting the prognosis of gastric cancer patients. PLoS One 2021; 16:e0254368. [PMID: 34252149 PMCID: PMC8274920 DOI: 10.1371/journal.pone.0254368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ferroptosis is a novel form of regulated cell death that plays a critical role in tumorigenesis. The purpose of this study was to establish a ferroptosis-associated gene (FRG) signature and assess its clinical outcome in gastric cancer (GC). Methods Differentially expressed FRGs were identified using gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed to construct a prognostic signature. The model was validated using an independent GEO dataset, and a genomic-clinicopathologic nomogram integrating risk scores and clinicopathological features was established. Results An 8-FRG signature was constructed to calculate the risk score and classify GC patients into two risk groups (high- and low-risk) according to the median value of the risk score. The signature showed a robust predictive capacity in the stratification analysis. A high-risk score was associated with advanced clinicopathological features and an unfavorable prognosis. The predictive accuracy of the signature was confirmed using an independent GSE84437 dataset. Patients in the two groups showed different enrichment of immune cells and immune-related pathways. Finally, we established a genomic-clinicopathologic nomogram (based on risk score, age, and tumor stage) to predict the overall survival (OS) of GC patients. Conclusions The novel FRG signature may be a reliable tool for assisting clinicians in predicting the OS of GC patients and may facilitate personalized treatment.
Collapse
|