1
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
2
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
3
|
Rizwan D, Masoodi FA. Brassica-derived isothiocyanates as anticancer therapeutic agents and their nanodelivery. Phytother Res 2024; 38:331-348. [PMID: 37882581 DOI: 10.1002/ptr.8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
The isothiocyanates (ITCs) derived from the precursor glucosinolate molecules present in Brassica vegetables are bioactive organo-sulfur compounds with numerous pharmacologically important properties such as antioxidant, antiinflammatory, antimicrobial, and anticancer. Over the years, ITCs have been the focus of several research investigations associated with cancer treatment. Due to their potent chemo-preventive action, ITCs have been considered to be promising therapeutics for cancer therapy in place of the already existing conventional anticancer drugs. However, their wide spread use at the clinical stage is greatly restricted due to several factors such as low solubility in an aqueous medium, low bioavailability, low stability, and hormetic effect. To overcome these hindrances, nanotechnology can be exploited to develop nano-scale delivery systems that have the potential to enhance stability, and bioavailability and minimize the hermetic effect of ITCs.
Collapse
Affiliation(s)
- Danish Rizwan
- Department of Food Science and Technology, University of Kashmir, Jammu and Kashmir, India
| | - Farooq Ahmad Masoodi
- Department of Food Science and Technology, University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
4
|
Fatima Qizilbash F, Sartaj A, Qamar Z, Kumar S, Imran M, Mohammed Y, Ali J, Baboota S, Ali A. Nanotechnology revolutionises breast cancer treatment: harnessing lipid-based nanocarriers to combat cancer cells. J Drug Target 2023; 31:794-816. [PMID: 37525966 DOI: 10.1080/1061186x.2023.2243403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
One of the most common cancers that occur in females is breast cancer. Despite the significant leaps and bounds that have been made in treatment of breast cancer, the disease remains one of the leading causes of death among women and a major public health challenge. The therapeutic efficacy of chemotherapeutics is hindered by chemoresistance and toxicity. Nano-based lipid drug delivery systems offer controlled drug release, nanometric size and site-specific targeting. Breast cancer treatment includes surgery, chemotherapy and radiotherapy. Despite this, no single method of treatment for the condition is currently effective due to cancer stem cell metastasis and chemo-resistance. Therefore, the employment of nanocarrier systems is necessary in order to target breast cancer stem cells. This article addresses breast cancer treatment options, including modern treatment procedures such as chemotherapy, etc. and some innovative therapeutic options highlighting the role of lipidic nanocarriers loaded with chemotherapeutic drugs such as nanoemulsion, solid-lipid nanoparticles, nanostructured lipid carriers and liposomes, and their investigations have demonstrated that they can limit cancer cell growth, reduce the risk of recurrence, as well as minimise post-chemotherapy metastasis. This article also explores FDA-approved lipid-based nanocarriers, commercially available formulations, and ligand-based formulations that are being considered for further research.
Collapse
Affiliation(s)
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Lloyd School of Pharmacy, Greater Noida, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
5
|
Gupta A, Nadaf A, Ahmad S, Hasan N, Imran M, Sahebkar A, Jain GK, Kesharwani P, Ahmad FJ. Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies. Med Oncol 2023; 40:173. [PMID: 37165283 DOI: 10.1007/s12032-023-02018-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Dasatinib is the 2nd generation TKI (Tyrosine Kinase Inhibitor) having the potential to treat numerous forms of leukemic and cancer patients and it is 300 times more potent than imatinib. Cancer is the major cause of death globally and need to enumerate novel strategies to coping with it. Various novel therapeutics introduced into the market for ease in treating various forms of cancer. We reviewed and evaluated all the related aspects of dasatinib, which can enhance the knowledge about dasatinib therapeutics methodology, pharmacodynamic and pharmacokinetics, side effects, advantages, disadvantages, various kinds of interactions and its novel formulations as well.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
S. M. S, Naveen NR, Rao GSNK, Gopan G, Chopra H, Park MN, Alshahrani MM, Jose J, Emran TB, Kim B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front Oncol 2022; 12:994155. [PMID: 36330493 PMCID: PMC9623325 DOI: 10.3389/fonc.2022.994155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 07/30/2023] Open
Abstract
Numerous naturally available phytochemicals have potential anti-cancer activities due to their vast structural diversity. Alkaloids have been extensively used in cancer treatment, especially lung cancers, among the plant-based compounds. However, their utilization is limited by their poor solubility, low bioavailability, and inadequacies such as lack of specificity to cancer cells and indiscriminate distribution in the tissues. Incorporating the alkaloids into nanoformulations can overcome the said limitations paving the way for effective delivery of the alkaloids to the site of action in sufficient concentrations, which is crucial in tumor targeting. Our review attempts to assess whether alkaloid nanoformulation can be an effective tool in lung cancer therapy. The mechanism of action of each alkaloid having potential is explored in great detail in the review. In general, Alkaloids suppress oncogenesis by modulating several signaling pathways involved in multiplication, cell cycle, and metastasis, making them significant component of many clinical anti-cancerous agents. The review also explores the future prospects of alkaloid nanoformulation in lung cancer. So, in conclusion, alkaloid based nanoformulation will emerge as a potential gamechanger in treating lung cancer in the near future.
Collapse
Affiliation(s)
- Sindhoor S. M.
- Department of Pharmaceutics, P.A. College of Pharmacy, Mangalore, Karnataka, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagar, Karnataka, India
| | - GSN Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
7
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
8
|
Synthesis, characterization and kinetics of sustained pantoprazole release studies of interpenetrated poly(acrylic acid)-chitosan-bentonite hydrogels for drug delivery systems. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|