1
|
Li S, Yang R, Zhao Z, Xie M, Zhou Y, Zeng Q, Zhu X, Zhang X. The multifunctional role of hydroxyapatite nanoparticles as an emerging tool in tumor therapy. Acta Biomater 2025:S1742-7061(25)00344-7. [PMID: 40374135 DOI: 10.1016/j.actbio.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Hydroxyapatite nanoparticles (HANPs) are well-known nanomaterials for bone regeneration or repair. In recent years, HANPs have emerged as a potential tool in tumor therapy because of the numerous advantages the nanoparticles offer, including the diverse physicochemical properties, the selective anti-tumor effect, intrinsic immunomodulatory activity, ability to reverse of drug or immune tolerance, allowance of ion substation, good drug-loading capabilities, etc. Notably, the physicochemical properties of the particles, such as size and shape, significantly influence their anti-tumor efficacy. Therefore, to offer a comprehensive understanding of the key properties of HANPs and the involving molecular mechanisms, and provide crucial cues for rational design and development of novel HANPs-based anti-tumor platforms, this review summarizes various synthesis methods of HANPs with controlled physiochemical characteristics and highlights the multifaceted effects such as interactions with tumor cells and immune cells, regulation of the tumor microenvironment (TME), overcoming drug or immune resistance, and their potentials as effective drug carriers. This review also outlines the emerging strategies leveraging HANPs for tumor therapy and diagnostic imaging. At last, we discuss the challenges HANPs face when used for tumor treatment. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HANPs) have emerged as a promising tool in tumor therapy without compromising biocompatibility. This review highlights the unique and multifaceted features of HANPs in tumor therapy, including the selective induction of tumor cell apoptosis, engagement in immune regulation, reversal of drug or immune resistance, and the loading of diverse anti-tumor drugs or biomaterials. Additionally, this review emphasizes the influence of the intrinsic physicochemical properties of HANPs on their anti-tumor activity, and explores the emerging strategies that leverage HANPs for tumor therapy and diagnostic imaging. In summary, this work aims to provide a comprehensive and deep understanding of the role of HANPs in tumor therapy and is significant for the improved design of HANP-based platforms for tumor therapy.
Collapse
Affiliation(s)
- Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ruinan Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhengyi Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mengzhang Xie
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Iftikhar M, Zhang Q, Abbasi R, Sarwar S, Bukhari SZ, Rehman M, Hussain I, Emen FM, Khan I, An R, Dong J, Ihsan A, Younis MR. Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:547-559. [PMID: 39780386 DOI: 10.1021/acsami.4c17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs). By examining these morphologies, we isolated the effects of surface roughness, porosity, and inner cavity structures on the critical therapeutic parameters. Our findings reveal that PAuNCs exhibit superior drug loading capabilities due to their enhanced surface area and porosity, facilitating greater interaction with therapeutic agents. Whereas, dissolution kinetic modeling confirmed that porosity contributes to improve diffusion-controlled drug release. In vitro studies on HepG2 cancer cells demonstrated that PAuNCs markedly improved cellular uptake, resulting in a dramatic reduction in cell viability to 3% and a notable increase in apoptosis (60.45%). Under near-infrared (NIR) irradiation, PAuNCs effectively induced localized hyperthermia (46.7 °C) and significantly inhibited tumor growth in an in vivo HepG2 tumor mice model compared with alternative nanogold morphologies. This research underscores the critical role of surface roughness, porosity, morphology, and cavitation in optimizing drug delivery and enhancing therapeutic outcomes of photoactivatable gold nanocarriers for collaborative photochemotherapy.
Collapse
Affiliation(s)
- Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
| | - Qianting Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Shumaila Sarwar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
- College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Punjab 54792, Pakistan
| | - Fatih Mehmet Emen
- Department of Chemistry, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur 15100, Türkiye
| | - Irfanullah Khan
- Institute of Nuclear Medicine and Oncology (INMOL), Lahore, Punjab 54000, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Zheng D, Li W, Liang J, Wang X, Yu M, Wang H, Wang X, Zhao J, Jin Z, Ma J. Study of Azobenzene-modified Black Phosphorus for Potential Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63225-63240. [PMID: 39513435 DOI: 10.1021/acsami.4c13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Exploring the interaction between black phosphorus (BP)-based hybrid systems and target proteins is of great significance for understanding the biological effects of 2D nanomaterials at the molecular level. Density functional theory (DFT) calculations revealed that different terminal groups of the azobenzene (AB) motif in BP@AB hybrids can affect the extent of interfacial charge transfer between the BP sheet and AB-derivatives, which determines the electrostatic interaction with proteins and hence biofunctions of BP@AB hybrids. With the advantage of AB modification, BP@AB hybrids displayed antitumor effects and induced production of cellular reactive oxygen species and apoptosis in cancer cells. Through the proteomics profiling, cellular ribosome and lipid metabolic processes were screened out as the target pathways of the BP@AB-NH2 in HeLa cells, while the BP@AB-S-S-AB system mainly targets the ERBB and PPAR signaling pathways. Molecular docking simulations revealed that due to the positive charge, ribosomal pathway proteins enriched in negatively charged amino acids such as lysine and arginine are preferentially adsorbed and bound by BP@AB-NH2 hybrids. Whereas for BP@AB-S-S-AB, receptors containing narrow and long pocket domains are more likely to bind with BP@AB-S-S-AB by van der Waals forces for the rod-like hybrids. Different biomolecule targeting and action modes of BP@AB hybrids have been rationalized by different electrostatic environments and matching of geometric configurations, shedding insight for designing efficient and targeted modification of a 2D nanomaterial-based strategy for cancer therapy.
Collapse
Affiliation(s)
- Dong Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, P. R. China
- Atom Manufacturing Institute (AMI), Nanjing 211805, P. R. China
| | - Wenxi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Junchuan Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Xueping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Maokai Yu
- School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R.China
| |
Collapse
|
4
|
Li Y, Zhang Y, Zhang Z, Zhang M, Niu X, Mao X, Yue T, Zhang X. Clathrin-Mediated Endocytosis of Multiple Nanoparticles Tends to Be Less Cooperative: A Computational Study. J Phys Chem B 2024; 128:9785-9797. [PMID: 39352204 DOI: 10.1021/acs.jpcb.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Yezhuo Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Man Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinhui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
6
|
Wang Y, Wu H, Chen Z, Cao J, Zhu X, Zhang X. Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth. Regen Biomater 2024; 11:rbae038. [PMID: 38799701 PMCID: PMC11127112 DOI: 10.1093/rb/rbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite a growing body of studies demonstrating the specific anti-tumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular Ca2+ homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the anti-tumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It is interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all upregulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Medical School, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Institute of tissue engineering and stem cells, Nanchong Central Hospital, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Mougkogiannis P, Adamatzky A. Memfractance of Proteinoids. ACS OMEGA 2024; 9:15085-15100. [PMID: 38585073 PMCID: PMC10993267 DOI: 10.1021/acsomega.3c09330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Proteinoids, or thermal proteins, are amino acid polymers formed at high temperatures by nonbiological processes. The objective of this study is to examine the memfractance characteristics of proteinoids within a supersaturated hydroxyapatite solution. The ionic solution utilized for the current-voltage (I-V) measurements possessed an ionic strength of 0.15 mol/L, a temperature of 37 °C, and a pH value of 7.4. The I-V curves exhibited distinct spikes, which are hypothesized to arise from the capacitive charging and discharging of the proteinoid-hydroxyapatite media. The experimental results demonstrated a positive correlation between the concentration of proteinoids and the observed number of spikes in the I-V curves. This observation provides evidence in favor of the hypothesis that the spikes originate from the proteinoids' capacitive characteristics. The memfractance behavior exemplifies the capacity of proteinoids to retain electrical charge within the hydrated hydroxyapatite media. Additional investigation is required in order to comprehensively identify the memcapacitive phenomena and delve into their implications for models of protocellular membranes. In a nutshell, this study provides empirical support for the existence of capacitive membrane-memfractance mechanisms in ensembles of proteinoids.
Collapse
Affiliation(s)
| | - Andrew Adamatzky
- Unconventional Computing
Laboratory, UWE, Bristol BS16 1QY, U.K.
| |
Collapse
|
8
|
López-Rios de Castro R, Ziolek RM, Ulmschneider MB, Lorenz CD. Therapeutic Peptides Are Preferentially Solubilized in Specific Microenvironments within PEG-PLGA Polymer Nanoparticles. NANO LETTERS 2024; 24:2011-2017. [PMID: 38306708 PMCID: PMC10870757 DOI: 10.1021/acs.nanolett.3c04558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Polymeric nanoparticles are a highly promising drug delivery formulation. However, a lack of understanding of the molecular mechanisms that underlie their drug solubilization and controlled release capabilities has hindered the efficient clinical translation of such technologies. Polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) nanoparticles have been widely studied as cancer drug delivery vehicles. In this letter, we use unbiased coarse-grained molecular dynamics simulations to model the self-assembly of a PEG-PLGA nanoparticle and its solubulization of the anticancer peptide, EEK, with good agreement with previously reported experimental structural data. We applied unsupervised machine learning techniques to quantify the conformations that polymers adopt at various locations within the nanoparticle. We find that the local microenvironments formed by the various polymer conformations promote preferential EEK solubilization within specific regions of the NP. This demonstrates that these microenvironments are key in controlling drug storage locations within nanoparticles, supporting the rational design of nanoparticles for therapeutic applications.
Collapse
Affiliation(s)
- Raquel López-Rios de Castro
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Robert M. Ziolek
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
- Kvantify
Aps, DK-2300 Copenhagen S, Denmark
| | | | - Christian D. Lorenz
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
9
|
Xie Q, Hao Y, Li N, Song H, Chen X, Zhou Z, Wang J, Zhang Y, Li H, Han P, Wang X. Cellular Uptake of Engineered Extracellular Vesicles: Biomechanisms, Engineered Strategies, and Disease Treatment. Adv Healthc Mater 2024; 13:e2302280. [PMID: 37812035 DOI: 10.1002/adhm.202302280] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.
Collapse
Affiliation(s)
- Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zilan Zhou
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210000, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| |
Collapse
|
10
|
Yin B, Zhang Q, Yan J, Huang Y, Li C, Chen J, Wen C, Wong SHD, Yang M. Nanomanipulation of Ligand Nanogeometry Modulates Integrin/Clathrin-Mediated Adhesion and Endocytosis of Stem Cells. NANO LETTERS 2023; 23:9160-9169. [PMID: 37494286 DOI: 10.1021/acs.nanolett.3c01757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nanosubstrate engineering can be a biomechanical approach for modulating stem cell differentiation in tissue engineering. However, the study of the effect of clathrin-mediated processes on manipulating this behavior is unexplored. Herein, we develop integrin-binding nanosubstrates with confined nanogeometries that regulate clathrin-mediated adhesion- or endocytosis-active signaling pathways for modulating stem fates. Isotropically presenting ligands on the nanoscale enhances the expression of clathrin in cells, thereby facilitating uptake of dexamethasone-loaded nanoparticles (NPs) to boost osteogenesis of stem cells. In contrast, anisotropic ligand nanogeometry suppresses this clathrin-mediated NP entry by strengthening the association between clathrin and adhesion spots to reinforce mechanotransduced signaling, which can be abrogated by the pharmacological inhibition of clathrin. Meanwhile, inhibiting focal adhesion formation hinders cell spreading and enables a higher endocytosis efficiency. Our findings reveal the crucial roles of clathrin in both endocytosis and mechanotransduction of stem cells and provide the parameter of ligand nanogeometry for the rational design of biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
11
|
Li W, Gong H, Fu Y, Sun J, Wang Y. Novel pH-sensitive nanoparticles based on prodrug strategy to delivery All-Trans Retinoic Acid for breast cancer. Colloids Surf B Biointerfaces 2022; 219:112838. [PMID: 36148708 DOI: 10.1016/j.colsurfb.2022.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Developing chemotherapy with nanoparticle-based prodrugs provides promising strategies for improving the safety and delivery of anti-cancer drugs therapeutics and effective cancer treatment. Herein, we developed a pH-sensitive prodrug delivery system (All-Trans-Retinoic Acid (ATRA) grafted poly (β-amino esters) (PBAE) copolymers, ATRA-g-PBAE) for delivery of ATRA with some physicochemical and biological properties. The in vitro release of ATRA-g-PBAE prodrug nanoparticles (PNPs) was sustained-release and pH-sensitive. The cytotoxicity and uptake of different preparations in vitro were evaluated on MCF-7 cells at pH 7.4 and 5.5. The carrier PBAE had no cytotoxicity, and ATRA-g-PBAE PNPs could significantly inhibit cell growth at pH 5.5. MCF-7 cells treated with Cy5.5 grafted PBAE (Cy5.5-PBAE) showed stronger fluorescence signals at pH 5.5. Meanwhile, ATRA-g-PBAE PNPs entered the cell via a clathrin-mediated endocytic pathway. Subsequently, PBAE protonation facilitated the escape of PNPs from the lysosome and released the drug. ATRA-g-PBAE seems promising as a novel pH-sensitive prodrug to overcome the limitations of ATRA for breast cancer therapy.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - HeXin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
12
|
Xu K, Wang Y, Xie Y, Zhang X, Chen W, Li Z, Wang T, Yang X, Guo B, Wang L, Zhu X, Zhang X. Anti-melanoma effect and action mechanism of a novel chitosan-based composite hydrogel containing hydroxyapatite nanoparticles. Regen Biomater 2022; 9:rbac050. [PMID: 35958518 PMCID: PMC9362996 DOI: 10.1093/rb/rbac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have been increasingly regarded and reported due to their potential anti-tumor ability. Previously, we found that the rod-like HANPs had good application potential for cutaneous melanoma (CMM). To satisfy the actual requirements in repairing post-operative skin defects and inhibiting CMM recurrence after tumorectomy, we constructed a novel chitosan/alginate (CS/Alg) hydrogel containing the aforementioned HANPs. The in vitro cell experiments confirmed that activated mitochondrial-dependent apoptosis was tightly related to the anti-tumor ability of HANPs. Specifically, we further discovered several target proteins might be involved in abnormal activating Wnt, proteoglycans in cancer, oxidative phosphorylation and p53 signaling pathways. The in vivo animal experiments demonstrated that the HANPs-loaded CS/Alg hydrogel (CS/Alg/HANPs) had a similar effect on inhibiting tumor growth as HANPs, and CS/Alg hydrogel as well as phosphate buffered saline (PBS) group (control) not showed any effect, proving the key role of HANPs. The immunohistochemical staining demonstrated a tumor inhibition via the mitochondria-mediated apoptosis pathway, consistent with the in vitro evaluation. Moreover, CS/Alg/HANPs exhibited no additional biosafety risk to the functions of major organs. Overall, this CS/Alg/HANPs hydrogel has substantial application potential for treating CMM.
Collapse
Affiliation(s)
- Kejia Xu
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Yao Xie
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiaoyan Zhang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Wei Chen
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Zhongtao Li
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Tingting Wang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Bo Guo
- West China Hospital, Sichuan University Department of Ophthalmology, , Chengdu 610041, China
| | - Lin Wang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
13
|
Wu H, Hua Y, Wu J, Zeng Q, Yang X, Zhu X, Zhang X. The morphology of hydroxyapatite nanoparticles regulates clathrin-mediated endocytosis in melanoma cells and resultant anti-tumor efficiency. NANO RESEARCH 2022; 15:6256-6265. [DOI: 10.1007/s12274-022-4220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2025]
|
14
|
Li M, Song P, Wang W, Xu Y, Li J, Wu L, Gui X, Zeng Z, Zhou Z, Liu M, Kong Q, Fan Y, Zhang X, Zhou C, Liu L. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. J Mater Chem B 2022; 10:4172-4188. [PMID: 35531933 DOI: 10.1039/d2tb00576j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cell-laden tissue engineering scaffold for osteochondral integrated repair is one of the ideal strategies for osteochondral lesions. In this study, we fabricated cell-laden porous hydrogel scaffolds with gradient nano-hydroxyapatite using methacrylic anhydride gelatin (GelMA), nano-hydroxyapatite (nHA), and polyethylene oxide (PEO) solution for osteochondral tissue regeneration. The scaffold possessed interconnected pores and a nano-hydroxyapatite gradient in the vertical direction. The chemical, physical, mechanical, and biological properties of the hydrogel solutions and scaffolds were characterized. In vitro experiments confirmed that cells were distributed homogeneously and that different pore structures could affect the proliferation and differentiation of BMSCs. The Nonporous hydrogel was beneficial for the chondrogenic differentiation of BMSCs and interconnected pores were conducive to BMSC proliferation and osteogenic differentiation. The osteochondral integrative repair capacity of the scaffold was assessed by implanting the scaffolds into the intercondylar defect of the rabbit femur. By constructing pore structures in different layers, the cells in different layers of the hydrogels were in an intrinsic environment for survival and differentiation. Animal experiments confirmed that tissue engineering scaffolds for osteochondral lesions require different pore structures in different layers, and gradient structure facilitated integrated repair.
Collapse
Affiliation(s)
- Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Jun Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhimou Zeng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Wang Y, Zhao L, Zhou X, Zhang J, Jiang J, Dong H. Global Fold Switching of the RafH Protein: Diverse Structures with a Conserved Pathway. J Phys Chem B 2022; 126:2979-2989. [PMID: 35438983 DOI: 10.1021/acs.jpcb.1c10965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is generally believed that a protein's sequence uniquely determines its structure, the basis for a protein to perform biological functions. However, as a representative metamorphic protein, RfaH can be encoded by a single amino acid sequence into two distinct native state structures. Its C-terminal domain (CTD) either takes an all-α-helical configuration to pack tightly with its N-terminal domain (NTD), or the CTD disassociates from the NTD, transforms into an all-β-barrel fold, and further attaches to the ribosome, leaving the NTD exposed to bind RNA polymerases. Therefore, the RfaH protein couples transcription and translation processes. Although previous studies have provided a preliminary understanding of its function, the full course of the conformational change of RfaH-CTD at the atomic level is elusive. We used teDA2, a feature space-based enhanced sampling protocol, to explore the transformation of RfaH-CTD. We found that it undergoes a large-scale structural rearrangement, with characteristic spectra as the fingerprint, and a global unfolding transition with a tighter and energetically moderate molten globule-like nucleus formed in between. The formation of this nucleus limits the possible intermediate conformations, facilitates the formation of secondary and tertiary structures, and thus ensures the efficiency of transformation. The key features along the transition path disclosed from this work are likely associated with the evolution of RfaH, such that encoding a single sequence into multiple folds with distinct biological functions is energetically unhindered.
Collapse
Affiliation(s)
- Yiqiao Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Luyuan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xuejie Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.,Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|