1
|
Ul Haq F, Imran M, Saleem S, Aftab U, Muazzam A, Rafi A, Jamal M, Safi SZ. Chemical characterization and cytotoxic effect of three edible fungi (Morchella) against breast cancer cells: A therapeutic approach. KUWAIT JOURNAL OF SCIENCE 2025; 52:100285. [DOI: 10.1016/j.kjs.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
2
|
Ul Haq F, Imran M, Ullah S, Aftab U, Akhtar T, Khan AH, Ullah R, Ejaz H, Gaffar F, Khan I. Morchella conica, Morchella esculenta and Morchella delicosa Induce Apoptosis in Breast and Colon Cancer Cell Lines via Pro-apoptotic and Anti-apoptotic Regulation. Chin J Integr Med 2024:10.1007/s11655-024-3819-0. [PMID: 39225882 DOI: 10.1007/s11655-024-3819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To explore the potential apoptotic mechanisms of 3 Morchella extracts (Morchella conica, Morchella esculenta and Morchella delicosa) on breast and colon cancer cell lines using apoptotic biomarkers. METHODS Human breast cell line (MCF-7) and colon cancer cell line (SW-480) were treated with methanol and ethanol extracts of 3 Morchella species with concentration ranging from 0.0625 to 2 mg/mL. After that their effects on gene expression of apoptosis related markers (pro-apoptotic markers including Bax, caspase-3, caspase-7, and caspase-9, and the antiapoptotic marker including Bcl-2) were determined using reverse transcription polymerase chain reaction. RESULTS All Morchella extracts reduced breast and colon cancer cells proliferation at half inhibitory concentration (IC50) of 0.02 ±0.01 to 0.68 ±0.30 mg/mL. As expected, all Morchella extracts significantly increased gene expressions of Bax, caspase-3, caspase-7, and caspase-9 and downregulated the gene expression of Bcl-2 in MCF-7 and SW-480 cell lines (P<0.05). CONCLUSIONS Morchella extracts demonstrated significant anti-proliferative activity against breast and colon cancer cell lines via an apoptosis induction mechanism. Anticancer activity of Morchella extracts and activation of apoptosis in breast and colon cancer cells suggest that it may be used to develop chemotherapeutic agents against cancer in future.
Collapse
Affiliation(s)
- Faiz Ul Haq
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan.
| | - Sami Ullah
- Department of Forensic Sciences, University of Health Sciences, Lahore, 54600, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Asif Haleem Khan
- Department of Hematology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Roh Ullah
- Department of Hematology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Fatema Gaffar
- Institute of Allied Health Sciences, De Montfort University, Leicester, LE1 9BH, UK
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| |
Collapse
|
3
|
Xie G, Chen M, Yang Y, Xie Y, Deng K, Xie L. Comprehensive untargeted lipidomics study of black morel (Morchella sextelata) at different growth stages. Food Chem 2024; 451:139431. [PMID: 38663248 DOI: 10.1016/j.foodchem.2024.139431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
The black morel (Morchella sextelata) is a valuable edible and medicinal mushroom appreciated worldwide. Here, lipidomic profiles and lipid dynamic changes during the growth of M. sexletata were analyzed using ultra-performance liquid chromatography coupled with mass spectrometry. 203 lipid molecules, including four categories and fourteen subclasses, were identified in mature fruiting bodies, with triacylglycerol being the most abundant (37.00 %). Fatty acid composition analysis revealed that linoleic acid was the major fatty acid among the free fatty acids, glycerolipids and glycerophospholipids. The relative concentration of lipids in M. sextelata changed significantly during its growth, from which 12 and 29 differential lipid molecules were screened out, respectively. Pathway analysis based on these differential lipids showed that glycerophospholipid metabolism was the major pathway involved in the growth of M. sextelata. Our study provides a comprehensive understanding of the lipids in M. sextelata and will facilitate the development and utilization of M. sextelata.
Collapse
Affiliation(s)
- Guangbo Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Innovation Center of Electronic Information & Traditional Chinese Medicine, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Maoyuan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yanran Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| |
Collapse
|
4
|
Chen X, Zhang Y, Chao S, Song L, Wu G, Sun Y, Chen Y, Lv B. Biocontrol potential of endophytic Bacillus subtilis A9 against rot disease of Morchella esculenta. Front Microbiol 2024; 15:1388669. [PMID: 38873148 PMCID: PMC11169702 DOI: 10.3389/fmicb.2024.1388669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Morchella esculenta is a popular edible fungus with high economic and nutritional value. However, the rot disease caused by Lecanicillium aphanocladii, pose a serious threat to the quality and yield of M. esculenta. Biological control is one of the effective ways to control fungal diseases. Methods and results In this study, an effective endophytic B. subtilis A9 for the control of M. esculenta rot disease was screened, and its biocontrol mechanism was studied by transcriptome analysis. In total, 122 strains of endophytic bacteria from M. esculenta, of which the antagonistic effect of Bacillus subtilis A9 on L. aphanocladii G1 reached 72.2% in vitro tests. Biological characteristics and genomic features of B. subtilis A9 were analyzed, and key antibiotic gene clusters were detected. Scanning electron microscope (SEM) observation showed that B. subtilis A9 affected the mycelium and spores of L. aphanocladii G1. In field experiments, the biological control effect of B. subtilis A9 reached to 62.5%. Furthermore, the transcritome profiling provides evidence of B. subtilis A9 bicontrol at the molecular level. A total of 1,246 differentially expressed genes (DEGs) were identified between the treatment and control group. Gene Ontology (GO) enrichment analysis showed that a large number of DEGs were related to antioxidant activity related. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the main pathways were Nitrogen metabolism, Pentose Phosphate Pathway (PPP) and Mitogen-Activated Protein Kinases (MAPK) signal pathway. Among them, some important genes such as carbonic anhydrase CA (H6S33_007248), catalase CAT (H6S33_001409), tRNA dihydrouridine synthase DusB (H6S33_001297) and NAD(P)-binding protein NAD(P) BP (H6S33_000823) were found. Furthermore, B. subtilis A9 considerably enhanced the M. esculenta activity of Polyphenol oxidase (POD), Superoxide dismutase (SOD), Phenylal anineammonia lyase (PAL) and Catalase (CAT). Conclusion This study presents the innovative utilization of B. subtilis A9, for effectively controlling M. esculenta rot disease. This will lay a foundation for biological control in Morchella, which may lead to the improvement of new biocontrol agents for production.
Collapse
Affiliation(s)
- Xue Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - ShengQian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - LiLi Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - GuoGan Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - YiFan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - BeiBei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
5
|
Qi Y, Guo XY, Xu XY, Hou JX, Liu SL, Guo HB, Xu AG, Yang RH, Yu XD. Widely targeted metabolomics analysis of Sanghuangporus vaninii mycelia and fruiting bodies at different harvest stages. Front Microbiol 2024; 15:1391558. [PMID: 38846565 PMCID: PMC11153664 DOI: 10.3389/fmicb.2024.1391558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Sanghuangprous vaninii is a medicinal macrofungus cultivated extensively in China. Both the mycelia and fruiting bodies of S. vaninii have remarkable therapeutic properties, but it remains unclear whether the mycelia may serve as a substitute for the fruiting bodies. Furthermore, S. vaninii is a perennial fungus with therapeutic components that vary significantly depending on the growing year of the fruiting bodies. Hence, it is critical to select an appropriate harvest stage for S. vaninii fruiting bodies for a specific purpose. With the aid of Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), metabolomics based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS) was used to preliminarily determine 81 key active metabolites and 157 active pharmaceutical metabolites in S. vaninii responsible for resistance to the six major diseases. To evaluate the substitutability of the mycelia and fruiting bodies of S. vaninii and to select an appropriate harvest stage for the fruiting bodies of S. vaninii, we analyzed the metabolite differences, especially active metabolite differences, among the mycelia and fruiting bodies during three different harvest stages (1-year-old, 2-year-old, and 3-year-old). Moreover, we also determined the most prominent and crucial metabolites in each sample of S. vaninii. These results suggested that the mycelia show promise as a substitute for the fruiting bodies of S. vaninii and that extending the growth year does not necessarily lead to higher accumulation levels of active metabolites in the S. vaninii fruiting bodies. This study provided a theoretical basis for developing and using S. vaninii.
Collapse
Affiliation(s)
- Yue Qi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Ying Guo
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xin-Yue Xu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jian-Xuan Hou
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Shi-Lai Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Hong-Bo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Ai-Guo Xu
- Alpine Fungarium, Tibet Plateau Institute of Biology, Lhasa, China
| | - Rui-Heng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Dan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Zhang Y, Li X, Zhao Z, E H, Fan T, Dong H, He X, Zhao X, Tang L, Zhou C. Comprehensive investigation on non-volatile and volatile flavor compounds in the Morchella sextelata and Morchella importuna by UPLC-MS/MS and GC × GC-TOF-MS. Food Chem X 2023; 20:100961. [PMID: 38144828 PMCID: PMC10740039 DOI: 10.1016/j.fochx.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Morchella sextelata and Morchella importuna are the main cultivars of morel. However, the key compounds affecting their flavors (taste and odor) are currently unknown. Here, an ultra performance tandem mass spectrometry combined with two-dimensional gas chromatography-time-of-flight mass spectrometry method was used to detect and relatively quantify the metabolites in both morel cultivars. A total of 631 non-volatile compounds and 242 volatile compounds were identified. The odor activity value was calculated to assess the contribution of key odor volatile. The results indicated that M. importuna had a sweeter flavor than M. sextelata. The former posed more prominent mushroom flavor than the latter based on the correlation analysis of the metabolites. The flavor differences of the two morel cultivars are highly relevant with the content of lipids, carbohydrates, amino acids and derivatives, alcohols and ketones. This study provides new insights into the theoretical basis for the flavor differences in both morel cultivars.
Collapse
Affiliation(s)
- Yanmei Zhang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaobei Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hengchao E
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Tingting Fan
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hui Dong
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiangwei He
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Lihua Tang
- Institute of Edible Fungi, National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| |
Collapse
|
7
|
Zhang C, Shi X, Zhang J, Zhang Y, Liu W, Wang W. Integration of Metabolomes and Transcriptomes Provides Insights into Morphogenesis and Maturation in Morchella sextelata. J Fungi (Basel) 2023; 9:1143. [PMID: 38132744 PMCID: PMC10744280 DOI: 10.3390/jof9121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
True morels (Morchella, Pezizales) are a popular edible and medicinal fungus with great nutritional and economic value. The dynamics and regulatory mechanisms during the morphogenesis and maturation of morels are poorly understood. In this study, the metabolomes and transcriptomes of the mycelium (MY), primordium differentiation (PR), young fruiting body (YFB), and mature fruiting body (MFB) were comprehensively analyzed to reveal the mechanism of the morphogenesis and maturation of Morchella sextelata. A total of 748 differentially expressed metabolites (DEMs) and 5342 differentially expressed genes (DEGs) were detected, mainly enriched in the carbohydrate, amino acid, and lipid metabolism pathways, with the transition from the mycelium to the primordium being the most drastic stage at both the metabolic and transcriptional levels. The integrated metabolomics and transcriptomics highlighted significant correlations between the DEMs and DEGs, and specific amino acid and nucleotide metabolic pathways were significantly co-enriched, which may play key roles in morphological development and ascocarp maturation. A conceptual model of transcriptional and metabolic regulation was proposed during morphogenesis and maturation in M. sextelata for the first time, in which environmental factors activate the regulation of transcription factors, which then promote metabolic and transcriptional regulation from vegetative to reproductive growth. These results provide insights into the metabolic dynamics and transcriptional regulation during the morphogenesis and maturation of morels and valuable resources for future breeding enhancement and sustainable artificial cultivation.
Collapse
Affiliation(s)
- Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Jiexiong Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| | - Yesheng Zhang
- Shandong Junsheng Biotechnologies Co., Ltd., Liaocheng 252400, China;
| | - Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| |
Collapse
|
8
|
Li X, Zhang Y, Hengchao E, He X, Li J, Zhao X, Zhou C. Characteristic fingerprints and comparison of volatile flavor compounds in Morchella sextelata under different drying methods. Food Res Int 2023; 172:113103. [PMID: 37689871 DOI: 10.1016/j.foodres.2023.113103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Morchella sextelata is a precious and popular commercial edible fungus that was developed recently in China. This research aimed to characterize the volatile profiles of M. sextelata under three dehydration methods (freeze, hot air, and natural air drying). Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-ToF-MS) was shown to the best choice to discriminate the volatile profiles of M. sextelata Characteristic flavor substances of M. sextelata were eight-carbon-containing (C8) compounds, hexanal, 2(5 h)-furanone, and benzaldehyde. Drying methods had significant influences on the volatile flavor profiles of M. sextelata, and 104 differential compounds were screened by multivariate statistical analysis. Freeze-dried samples had the most abundant volatile compounds and maintained more alcohols, ketones, aldehydes, and esters described as mushroom, sweet, and green flavor, like 1-octen-3-ol, 1-octen-3-one, nonanal, 2,3-butanedione, and so on. Hot air-drying promoted the production of heterocycles and ketones with roasted flavor due to the thermalreaction, such as 2-cyclohexen-1-one, furan, 3-phenyl-, etc. Natural air-drying resulted in acids releasing an unpleasant flavor, e.g., acetic acid, 2-methylbutanoic acid, etc. Overall, thermal reaction combined with vacuum conditions might be suitable for maintaining and enriching the aroma flavor of dried true morels.
Collapse
Affiliation(s)
- Xiaobei Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Yanmei Zhang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - E Hengchao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiangwei He
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Jianying Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| |
Collapse
|
9
|
Wu F, Li Z, Chen X, Si X, Lin S. Untargeted metabolomics reveals sour jujube kernel benefiting the nutritional value and flavor of Morchella esculenta. Open Life Sci 2023; 18:20220708. [PMID: 37671097 PMCID: PMC10476485 DOI: 10.1515/biol-2022-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Nucleosides, organic acids, and amino acids separated from Morchella esculenta are well known for their nutritional value and flavor. However, how to increase their content in a better way has been a challenge. In this study, the effect of adding jujube kernel on the active components of M. esculenta was investigated by untargeted metabolomics using UPLC-MS/MS. A total of 1,243 metabolites were identified, of which 262 metabolites (21.078%) were organic acids and derivatives, 245 metabolites (19.71%) were lipids and lipid-like molecules, and 26 metabolites (2.092%) were nucleosides, nucleotides, and analogues. Subsequently, differential metabolites between groups were screened by the orthogonal partial least squares-discriminant analysis model, which showed that 256 metabolites were identified as significantly different for the positive ion model and 149 for the negative ion model. Moreover, significant differential metabolites (VIP > 1, P < 0.05) in annotation of kyoto encyclopedia of genes and genomes pathway were investigated, which showed that ABC transporters were the most commonly observed transporters, followed by pyrimidine metabolism and purine metabolism. The results indicated that the main components of jujube kernel might be conducive to the accumulation of nucleoside organic acids and amino acid metabolites in M. esculenta. These results provide important information for the understanding of more suitable way for cultivation of M. esculenta.
Collapse
Affiliation(s)
- Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiyuan Li
- Department of Acupuncture, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xinlei Si
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Recchia MJJ, Baumeister TUH, Liu DY, Linington RG. MultiplexMS: A Mass Spectrometry-Based Multiplexing Strategy for Ultra-High-Throughput Analysis of Complex Mixtures. Anal Chem 2023; 95:11908-11917. [PMID: 37530514 PMCID: PMC11093148 DOI: 10.1021/acs.analchem.3c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
High-throughput chemical analysis of natural product mixtures lags behind developments in genome sequencing technologies and laboratory automation, leading to a disconnect between library-scale chemical and biological profiling that limits new molecule discovery. Here, we report a new orthogonal sample multiplexing strategy that can increase mass spectrometry-based profiling up to 30-fold over traditional methods. Profiled pooled samples undergo subsequent computational deconvolution to reconstruct peak lists for each sample in the set. We validated this approach using in silico experiments and demonstrated a high assignment precision (>97%) for large, pooled samples (r = 30), particularly for infrequently occurring metabolites of relevance in drug discovery applications. Requiring only 5% of the previously required MS acquisition time, this approach was repeated in a recent biological activity profiling study on 925 natural product extracts, leading to the rediscovery of all previously reported bioactive metabolites. This new method is compatible with MS data from any instrument vendor and is supported by an open-source software package: https://github.com/liningtonlab/MultiplexMS.
Collapse
Affiliation(s)
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
11
|
Large-scale commercial cultivation of morels: current state and perspectives. Appl Microbiol Biotechnol 2022; 106:4401-4412. [PMID: 35731306 DOI: 10.1007/s00253-022-12012-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Since morels were first successfully cultivated commercially in Sichuan in 2012, morel cultivation has expanded to more than 20 provinces in China. The highest yield currently reaches 15,000 kg/ha. Morel cultivation is characterized by its environmental friendliness, short cycle length, and high profit. However, the yield obtained is unstable which makes morel cultivation a high-risk industry. Although 10 production cycles have passed, there is still a gap between morel cultivation practice and our basic knowledge of morel biology. This mini-review concentrates on the development needs of morel cultivation. We illustrate the key techniques used in the large-scale commercial cultivation of morels and their relevant studies, including nutritional requirements, mechanisms of nutrient bag, soil type, vegetative and reproductive growth conditions, and disease control. This review will be a useful practical reference for the commercial artificial cultivation of morels and promoting the vital technologies required. KEY POINTS: •Unstable yield still exists after commercial cultivation of morels realized. •There is a gap between cultivation practice and our knowledge of morel biology. •Key techniques are illustrated for morel cultivation practice.
Collapse
|
12
|
Xie G, Tang L, Xie Y, Xie L. Secondary Metabolites from Hericium erinaceus and Their Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072157. [PMID: 35408555 PMCID: PMC9000484 DOI: 10.3390/molecules27072157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
Abstract
Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects.
Collapse
Affiliation(s)
- Guangbo Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
- Correspondence: (G.X.); (L.X.)
| | - Lan Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
| | - Yu Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Correspondence: (G.X.); (L.X.)
| |
Collapse
|
13
|
Deng K, Lan X, Chen Y, Wang T, Li M, Xu Y, Cao X, Xie G, Xie L. Integration of Transcriptomics and Metabolomics for Understanding the Different Vegetative Growth in Morchella Sextelata. Front Genet 2022; 12:829379. [PMID: 35186020 PMCID: PMC8854800 DOI: 10.3389/fgene.2021.829379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Morchella sextelata is an edible and medicinal fungus with high nutritional, medicinal, and economic value. Recently, M. sextelata has been produced through artificial cultivation in China, but its stable production remains problematic because the details of its growth and development process are limitedly understood. Herein, to investigate the dynamic process of M. sextelata development, we integrated the transcriptomics and metabolomics data of M. sextelata from three developmental stages: the young mushroom period (YMP), marketable mature period (MMP), and physiological maturity period (PMP). The results showed that the transcriptome changed dynamically at different stages and demonstrated the significant enrichment of pathways that regulate plant growth and development, such as N-glycan biosynthesis and carbon and purine metabolism. Similarly, small-molecule metabolites, such as D-fructose-1,6-biphosphate, which was upregulated during the YMP, dihydromyricetin, which was upregulated during the MMP, and L-citrulline, which was upregulated during the PMP, also showed phase-dependent characteristics. Then, combined analysis of the transcriptome data and metabolome traits revealed that the transcriptome may affect metabolic molecules during different growth stages of M. sextelata via specific enzymes, such as α-glucosidase and glucanase, which were included in two opposite transcriptome modules. In summary, this integration of transcriptomics and metabolomics data for understanding the vegetative growth of M. sextelata during different developmental stages implicated several key genes, metabolites, and pathways involved in the vegetative growth. We believe that these findings will provide comprehensive insights into the dynamic process of growth and development in M. sextelata and new clues for optimizing the methods for its cultivation application.
Collapse
Affiliation(s)
- Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Kejun Deng, ; Liyuan Xie,
| | - Xiuhua Lan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ying Chen
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ting Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengke Li
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingyin Xu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xuelian Cao
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangbo Xie
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Xie
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Kejun Deng, ; Liyuan Xie,
| |
Collapse
|
14
|
Yu Y, Tan H, Liu T, Liu L, Tang J, Peng W. Dual RNA-Seq Analysis of the Interaction Between Edible Fungus Morchella sextelata and Its Pathogenic Fungus Paecilomyces penicillatus Uncovers the Candidate Defense and Pathogenic Factors. Front Microbiol 2021; 12:760444. [PMID: 34925269 PMCID: PMC8675245 DOI: 10.3389/fmicb.2021.760444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Morels (Morchella spp.) are economically important mushrooms cultivated in many countries. However, their production and quality are hindered by white mold disease because of Paecilomyces penicillatus infection. In this study, we aimed to understand the genetic mechanisms of interactions between P. penicillatus and Morchella. M. sextelata, the most prevalent species of Morchella in China, was inoculated with P. penicillatus; then, the expression profiles of both fungi were determined simultaneously at 3 and 6 days post-inoculation (dpi) using a dual RNA-Seq approach. A total of 460 and 313 differentially expressed genes (DEGs) were identified in P. penicillatus and M. sextelata, respectively. The CAZymes of β-glucanases and mannanases, as well as subtilase family, were upregulated in P. penicillatus, which might be involved in the degradation of M. sextelata cell walls. Chitin recognition protein, caffeine-induced death protein, and putative apoptosis-inducing protein were upregulated, while cyclin was downregulated in infected M. sextelata. This indicates that P. penicillatus could trigger programmed cell death in M. sextelata after infection. Laccase-2, tyrosinases, and cytochrome P450s were also upregulated in M. sextelata. The increased expression levels of these genes suggest that M. sextelata could detoxify the P. penicillatus toxins and also form a melanin barrier against P. penicillatus invasion. The potential pathogenic mechanisms of P. penicillatus on M. sextelata and the defense mechanisms of M. sextelata against P. penicillatus were well described.
Collapse
Affiliation(s)
- Yang Yu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China.,School of Bioengineering, Jiangnan University, Wuxi, China
| | - Tianhai Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lixu Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jie Tang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|