1
|
Li S, Wang Y, Zhu X, Zheng H, Ni J, Li H, Yang Y. Lipid on stroke in intracranial artery atherosclerotic stenosis: a mediation role of glucose. Front Endocrinol (Lausanne) 2024; 15:1322114. [PMID: 39229382 PMCID: PMC11368875 DOI: 10.3389/fendo.2024.1322114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Objective Expanding on previous investigations, this study aims to elucidate the role of lipid metabolism disorders in the development of intracranial atherosclerotic stenosis (ICAS) and the determination of stroke risk. The primary objective is to explore the connections between lipid parameters and acute ischemic stroke (AIS), while also examining the potential mediating influence of fasting glucose levels. Methods Retrospectively, we collected data from symptomatic ICAS patients at the First Affiliated Hospital of Soochow University, including their baseline information such as medical histories and admission blood biochemical parameters. Stenotic conditions were evaluated using magnetic resonance imaging, computed tomography angiography, or digital subtraction angiography. The associations between lipid parameters and AIS risks were investigated via multivariate logistic regression analysis. Results A total of 1103 patients with symptomatic ICAS were recruited, among whom 441 (40.0%) suffered new ischemic events during hospitalization. After adjusting for confounding factors, the RCS curves exhibited a dose-response relationship between the atherogenic index of plasma (AIP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and AIS. Further multivariate analysis revealed significant associations between these parameters and AIS. Furthermore, mediation analysis indicated that fasting blood glucose (FBG) acted as a mediator in the association between lipid parameters (AIP, TC, and TG) and AIS. Conclusion Higher lipid parameters in ICAS patients, particularly AIP, TC, and TG, were associated with an increased AIS risk. Additionally, FBG may mediate stroke risk in ICAS patients, highlighting the need for further exploration of underlying mechanisms.
Collapse
Affiliation(s)
- Sheng Li
- Department of Critical Care Medicine, Suzhou Wuzhong People’s Hospital, Suzhou, Jiangsu, China
| | - Yiqing Wang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiangyi Zhu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - He Zheng
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianqiang Ni
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Li
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi Yang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Moxon JV, Calcino A, Kraeuter AK, Phie J, Anderson G, Standley G, Sealey C, Jones RE, Field MA, Golledge J. A case-control comparison of acute-phase peripheral blood gene expression in participants diagnosed with minor ischaemic stroke or stroke mimics. Hum Genomics 2023; 17:106. [PMID: 38007520 PMCID: PMC10676587 DOI: 10.1186/s40246-023-00551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Past studies suggest that there are changes in peripheral blood cell gene expression in response to ischaemic stroke; however, the specific changes which occur during the acute phase are poorly characterised. The current study aimed to identify peripheral blood cell genes specifically associated with the early response to ischaemic stroke using whole blood samples collected from participants diagnosed with ischaemic stroke (n = 29) or stroke mimics (n = 27) following emergency presentation to hospital. Long non-coding RNA (lncRNA), mRNA and micro-RNA (miRNA) abundance was measured by RNA-seq, and the consensusDE package was used to identify genes which were differentially expressed between groups. A sensitivity analysis excluding two participants with metastatic disease was also conducted. RESULTS The mean time from symptom onset to blood collection was 2.6 h. Most strokes were mild (median NIH stroke scale score 2.0). Ten mRNAs (all down-regulated in samples provided by patients experiencing ischaemic stroke) and 30 miRNAs (14 over-expressed and 16 under-expressed in participants with ischaemic stroke) were significantly different between groups in the whole cohort and sensitivity analyses. No significant over-representation of gene ontology categories by the differentially expressed genes was observed. Random forest analysis suggested a panel of differentially expressed genes (ADGRG7 and miRNAs 96, 532, 6766, 6798 and 6804) as potential ischaemic stroke biomarkers, although modelling analyses demonstrated that these genes had poor diagnostic performance. CONCLUSIONS This study provides evidence suggesting that the early response to minor ischaemic stroke is predominantly reflected by changes in the expression of miRNAs in peripheral blood cells. Further work in independent cohorts particularly in patients with more severe stroke is needed to validate these findings and investigate their clinical relevance.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Andrew Calcino
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Ann-Katrin Kraeuter
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle Upon Tyne, UK
| | - James Phie
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Georgina Anderson
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Glenys Standley
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Cindy Sealey
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Rhondda E Jones
- Research Division, James Cook University, Townsville, QLD, 4811, Australia
- Tropical Australian Academic Health Centre, Townsville, QLD, 4811, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Menzies School of Health Research, Darwin, NT, 0811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, 4811, Australia.
| |
Collapse
|
3
|
Lu Z, Tang H, Li S, Zhu S, Li S, Huang Q. Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Curr Neuropharmacol 2023; 21:1575-1593. [PMID: 36847232 PMCID: PMC10472809 DOI: 10.2174/1570159x21666230214112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 03/01/2023] Open
Abstract
Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.
Collapse
Affiliation(s)
- Zhiwen Lu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haishuang Tang
- Department of Nerurosurgery, Naval Medical Center of PLA, Navy Medical University, Shanghai, 200050, China
| | - Sisi Li
- Department of Cerebrovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shijie Zhu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siqi Li
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qinghai Huang
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Wang Q, Chen Y, Meng L, Yin J, Wang L, Gong T. A Novel Perspective on Ischemic Stroke: A Review of Exosome and Noncoding RNA Studies. Brain Sci 2022; 12:1000. [PMID: 36009062 PMCID: PMC9406049 DOI: 10.3390/brainsci12081000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemic stroke is a life-threatening condition that also frequently results in long-term disability. Currently, intravenous thrombolysis with tissue plasminogen activator and mechanical thrombectomy is the most popular treatment. However, the narrow time window and related complications limit the treatment benefits. Exosomes have recently emerged as ideal therapeutic candidates for ischemic stroke with the ability to pass through the blood_brain barrier and mediate intercellular communication, in addition, exosomes and their contents can be bioengineered to implement targeted delivery. In the last two decades, exosomes and exosomal noncoding RNAs have been found to be involved in the pathophysiological progression of ischemic stroke, including atherosclerosis, apoptosis, inflammation, oxidative stress, and neurovascular remodeling. In this review, we describe the latest progress regarding the role of exosomal long noncoding RNAs and circular RNAs in the occurrence, progression, and recovery of ischemic stroke. Exploration of exosomal noncoding RNAs and their correlated effects in ischemic stroke may facilitate accurate diagnosis, and they may serve as new therapeutic targets for the disease.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China; (Q.W.); (Y.C.); (J.Y.); (L.W.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdansantiao, Dongcheng District, Beijing 100730, China;
| | - Yuhui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China; (Q.W.); (Y.C.); (J.Y.); (L.W.)
| | - Lingbing Meng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdansantiao, Dongcheng District, Beijing 100730, China;
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China
| | - Jiawen Yin
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China; (Q.W.); (Y.C.); (J.Y.); (L.W.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdansantiao, Dongcheng District, Beijing 100730, China;
| | - Li Wang
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China; (Q.W.); (Y.C.); (J.Y.); (L.W.)
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China; (Q.W.); (Y.C.); (J.Y.); (L.W.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdansantiao, Dongcheng District, Beijing 100730, China;
| |
Collapse
|
5
|
Ding Y, Yin R, Zhang S, Xiao Q, Zhao H, Pan X, Zhu X. The Combined Regulation of Long Non-coding RNA and RNA-Binding Proteins in Atherosclerosis. Front Cardiovasc Med 2021; 8:731958. [PMID: 34796209 PMCID: PMC8592911 DOI: 10.3389/fcvm.2021.731958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Modifications of gene expression detected in peripheral blood after brain ischemia treated with remote postconditioning. Mol Biol Rep 2021; 49:477-485. [PMID: 34766231 DOI: 10.1007/s11033-021-06899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND A stroke is an acute damage to a certain area of a nerve tissue of the brain. In developed countries, it ranks second among the most often causes of death and is also the leading cause of disability. Recent findings emphasize the significant neuroprotective effect of conditioning on the course and rate of recovery after ischemic attack; however the molecular mechanism of ischemic tolerance induced by conditioning is still not completely explored. METHODS AND RESULTS The purpose of this study is an identification of changes in gene expression induced by stimulation of reaction cascades after activation of the neuroprotective mechanism using an experimental rat model of global ischemia. The induction of neuroprotective cascades was stimulated by the application of early and delayed form of remote ischemic postconditioning. The quantitative qRT-PCR method was used to assess the rate of change in ADM, BDNF, CDKN1A, CREB, GADD45G, IL6, nNOS, and TM4SF1 gene expression levels 72 h after ischemic attack. The detected results confirm the neuroprotective effect of both forms of postconditioning. Participation of neuroprotection-related gene expression changes was observed once as an early one (CREB, GADD45G), once as a delayed one (ADM, IL6), or both (BDNF, CDKN1A, nNOS, TM4SF1) postconditioning forms, depending on the particular gene. CONCLUSIONS Our results characterize impact of ischemic tolerance on the molecular level. We predict ischemic tolerance to be consisted of complex combination of early and delayed remote postconditioning.
Collapse
|