1
|
Saranya KR, Vimina ER. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Comput Biol Chem 2024; 112:108175. [PMID: 39191166 DOI: 10.1016/j.compbiolchem.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed. We aim to explore the potential of considering sole cancer genes in drug response prediction. Here the multi-omics data such as gene expressions, mutation data, and methylation data along with the molecular structural information of drugs were integrated to predict the IC50 values of drugs. Drug features are extracted by employing a Uniform Graph Convolution Network, while Cell line features are extracted using a combination of Convolutional Neural Network and Fully Connected Networks. These features are then concatenated and fed into a deep ResNet for the prediction of IC50 values between Drug - Cell line pairs. The proposed method yielded higher Pearson's correlation coefficient (rp) of 0.7938 with lowest Root Mean Squared Error (RMSE) value of 0.92 when compared with similar methods of tCNNS, MOLI, DeepCDR, TGSA, NIHGCN, DeepTTA, GraTransDRP and TSGCNN. Further, when the model is extended to a classification problem to categorize drugs as sensitive or resistant, we achieved AUC and AUPR measures of 0.7623 and 0.7691, respectively. The drugs such as Tivozanib, SNX-2112, CGP-60474, PHA-665752, Foretinib etc., exhibited low median IC50 values and were found to be effective anti-cancer drugs. The case studies with different TCGA cancer types also revealed the effectiveness of SNX-2112, CGP-60474, Foretinib, Cisplatin, Vinblastine etc. This consistent pattern strongly suggests the effectiveness of the model in predicting CDR.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - E R Vimina
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| |
Collapse
|
2
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Chen S, Huang C, Jin E. Regulation of overexpression lncRNA ATP2B1-AS1 on lung adenocarcinoma progression. J Cardiothorac Surg 2024; 19:88. [PMID: 38347625 PMCID: PMC10863155 DOI: 10.1186/s13019-024-02507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND LncRNA ATP2B1-AS1 (ATP2B1-AS1) is involved in the occurrence and development of various diseases, while the relationship between lung adenocarcinoma (LUAD) and ATP2B1-AS1 is unclear. This study was to investigate the expression of ATP2B1-AS1 in LUAD and its influence on survival and prognosis of patients. METHODS LUAD tissue samples from patients participating in this study were collected, and the expression levels of ATP2B1-AS1 and miR-141-3p in LUAD sampleswere detected by real-time quantitative polymerase chain reaction (RT-qPCR). The effect of ATP2B1-AS1 on the growth of A549 cells was investigated through cell counting kit-8 (CCK-8) and transwell experiments. Besides, the prognostic value of ATP2B1-AS1 in LUAD was assessed via Kaplan-Meier curve and multivariate Cox regression. RESULTS ATP2B1-AS1 was downregulated in LUAD tissues and cells, whereas miR-141-3p was upregulated. After pcDNA3.1-ATP2B1-AS1 was transfected into A549 cells, the proliferation ability of A549 cells was decreased, and the migration level and invasion of A549 cells were also inhibited. High expression of ATP2B1-AS1 sponge miR-141-3p exerted prognostic value. CONCLUSIONS ATP2B1-AS1 sponge miR-141-3p alleviated the progression of LUAD, and ATP2B1-AS1 may be deemed as a prognostic marker for LUAD.
Collapse
Affiliation(s)
- Shiyi Chen
- Department of Medical Oncology Ward 1, The 4th People's Hospital of Shenyang, No. 20, Huanghe South Street, Huanggu District, Liaoning, 110000, China
| | - Chao Huang
- Department of Medical Oncology Ward 1, The 4th People's Hospital of Shenyang, No. 20, Huanghe South Street, Huanggu District, Liaoning, 110000, China
| | - E Jin
- Department of Medical Oncology Ward 1, The 4th People's Hospital of Shenyang, No. 20, Huanghe South Street, Huanggu District, Liaoning, 110000, China.
| |
Collapse
|
4
|
XU YUANYUAN, CHEN XIAOKE. MicroRNA (let-7b-5p)-targeted DARS2 regulates lung adenocarcinoma growth by PI3K/AKT signaling pathway. Oncol Res 2024; 32:517-528. [PMID: 38361754 PMCID: PMC10865744 DOI: 10.32604/or.2023.030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024] Open
Abstract
Background The aberrant intracellular expression of a mitochondrial aspartyl-tRNA synthetase 2 (DARS2) has been reported in human cancers. Nevertheless, its critical role and detailed mechanism in lung adenocarcinoma (LUAD) remain unexplored. Methods Initially, The Cancer Genome Atlas (TCGA)-based Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/) was used to analyze the prognostic relevance of DARS2 expression in LUAD. Further, cell counting kit (CCK)-8, immunostaining, and transwell invasion assays in LUAD cell lines in vitro, as well as DARS2 silence on LUAD by tumorigenicity experiments in vivo in nude mice, were performed. Besides, we analyzed the expression levels of p-PI3K (phosphorylated-Phosphotylinosital3 kinase), PI3K, AKT (Protein Kinase B), p-AKT (phosphorylated-Protein Kinase B), PCNA (proliferating cell nuclear antigen), cleaved-caspase 3, E-cadherin, and N-cadherin proteins using the Western blot analysis. Results LUAD tissues showed higher DARS2 expression compared to normal tissues. Upregulation of DARS2 could be related to Tumor-Node-Metastasis (TNM) stage, high lymph node metastasis, and inferior prognosis. DARS2 silence decreased the proliferation, migration, and invasion abilities of LUAD cells. In addition, the DARS2 downregulation decreased the PCNA and N-cadherin expression and increased cleaved-caspase 3 and E-cadherin expressions in LUAD cells, coupled with the inactivation of the PI3K/AKT signaling pathway. Moreover, DARS2 silence impaired the tumorigenicity of LUAD in vivo. Interestingly, let-7b-5p could recognize DARS2 through a complementary sequence. Mechanistically, the increased let-7b-5p expression attenuated the promo-oncogenic action of DARS2 during LUAD progression, which were inversely correlated to each other in the LUAD tissues. Conclusion In summary, let-7b-5p downregulated DARS2 expression, regulating the progression of LUAD cells by the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- YUANYUAN XU
- Department of Oncology Surgery, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - XIAOKE CHEN
- Department of Oncology Surgery, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
6
|
IRF-1-inhibited lncRNA XIST regulated the osteogenic differentiation via miR-450b/FBXW7 axis. Apoptosis 2023; 28:669-680. [PMID: 36800052 DOI: 10.1007/s10495-023-01820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
Osteoporosis influences life quality among elder people. Osteoblast dysfunction could cause the occurrence of osteoporosis. LncRNA XIST are involved in the progression of osteoporosis. However, the correlation between IRF-1 and XIST in osteogenic differentiation remains unclear. In the study, Clinical samples were collected for the analysis of XIST level. mRNA and protein levels were detected by RT-qPCR and western blot, respectively. H&E staining was performed to observe the histological changes in mice. Alizarin Red Staining was applied to assess the calcium deposits in hBMSCs. Meanwhile, the relation among XIST, miR-450b and FBXW7 was investigated by dual luciferase assay and ChIP. In vivo model was constructed to assess the impact of XIST in osteoporosis. XIST was found to be upregulated in osteoporosis, and XIST overexpression could inhibit the osteogenic differentiation in hBMSCs. IRF-1 could transcriptionally inhibit the expression of XIST, and XIST could inhibit osteogenic differentiation through binding with miR-450b in hBMSCs. In addition, miR-450b significantly promoted the osteogenic differentiation in hBMSCs via targeting FBXW7. Furthermore, XIST knockdown could inhibit the symptom of osteoporosis in vivo. IRF-1 promoted the osteogenic differentiation via mediation of lncRNA XIST/miR-450b/FBXW7 axis, and this finding might shed novel insights on exploring new ideas against osteoporosis.
Collapse
|
7
|
Li D, Liu X, Jiang N, Ke D, Guo Q, Zhai K, Han H, Xiao X, Fan T. Interfering with ITGB1-DT expression delays cancer progression and promotes cell sensitivity of NSCLC to cisplatin by inhibiting the MAPK/ERK pathway. Am J Cancer Res 2022; 12:2966-2988. [PMID: 35968342 PMCID: PMC9360236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023] Open
Abstract
Long non-coding RNA ITGB1-DT is involved in the regulation of cancer growth and metastasis. However, the roles of ITGB1-DT in non-small cell lung cancer (NSCLC) progression and sensitivity to cisplatin has not been elucidated. ITGB1-DT expression in NSCLC tissues, and the relationship between ITGB1-DT expression with NSCLC diagnosis, prognosis, clinicopathological features, and immune cell infiltration were investigated in The Cancer Gene Atlas (TCGA) database. The roles and mechanisms of ITGB1-DT in cell growth, migration, and drug sensitivity of NSCLC cells were explored in the cell model. The prognostic nomograms of ITGB1-DT-related genes were evaluated using bioinformatics. ITGB1-DT was overexpressed in NSCLC. Elevated ITGB1-DT expression was related to the late T stage, N stage, M stage, short overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) of NSCLC patients. ITGB1-DT was the independent risk factors for poor prognosis, and had diagnostic value for NSCLC patients. Interfering with the ITGB1-DT expression can inhibit the proliferation, migration, and invasion of A549, H1299, and drug-resistant A549/DDP, possibly due to the inhibition of p38 MAPK and ERK phosphorylation levels. ITGB1-DT expression was correlated with the levels of NSCLC immune infiltration cells, such as the TReg, Th, and NK cells. ITGB1-DT-related gene nomograms were associated with the prognosis, and were expected to evaluate the prognosis of NSCLC patients. In conclusion, inhibition of ITGB1-DT expression delayed the growth and metastasis of NSCLC using the MAPK/ERK signaling mechanism and enhanced the sensitivity of NSCLC to cisplatin drugs. These results indicate that ITGB1-DT might be a biomarker for evaluating the diagnosis and prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Dan Li
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
- Department of Oncology, Huanggang Central HospitalHuanggang 438000, Hubei, China
| | - Xiaoli Liu
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
- Department of Ultrasound, The Peoples’ Hospital of Jianyang CityJianyang 641400, Sichuan, China
| | - Ni Jiang
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Di Ke
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
- Department of Radiology, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Kui Zhai
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Hao Han
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Xue Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Tengyang Fan
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| |
Collapse
|
8
|
Chen X, Yuan Y, Ren W, Zhou F, Huang X, Pu J, Niu X, Jiang X. Pan-Cancer Integrated Analysis Identification of SASH3, a Potential Biomarker That Inhibits Lung Adenocarcinoma Progression. Front Oncol 2022; 12:927988. [PMID: 35756681 PMCID: PMC9232268 DOI: 10.3389/fonc.2022.927988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3) is an adaptor protein expressed mainly in lymphocytes, and plays significant roles in T-cell proliferation and cell survival. However, its expression level, clinical significance, and correlation with tumor-infiltrating immune cells across cancers remain unclear. In this study, we comprehensively examined the expression, dysregulation, and prognostic significance of SASH3, and the correlation with clinicopathological parameters and immune infiltration in pan-cancer. The mRNA and protein expression status of SASH3 were determined by TCGA, GTEx, and UALCAN. Kaplan–Meier analysis utilized the prognostic values of SASH3 in diverse cancers. The association between SASH3 expression and gene mutation, DNA methylation, immune cells infiltration, immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data from the TCGA database. High expression of SASH3 was not only linked to poor OS in ESCC, LAML, LGG, and UVM, but also associated with better OS in CESC, HNSC, LUAD, SARC, SKCM, THYM, and UCEC. As for DSS, a high level of SASH3 correlated with adverse DSS in ESCC, LGG, and UVM, and lowly expressed SASH3 was associated with shorter OS in CESC, HNSC, LUAD, SARC, SKCM, and UCEC. The results of Cox regression and nomogram analyses confirmed that SASH3 was an independent factor for LUAD prognosis. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) results showed that SASH3 was involved in natural killer cell-mediated cytotoxicity, Th17 cell differentiation, PD-L1 expression and PD-1 checkpoint pathway in cancer, NF-kappa B signaling pathway, B-cell receptor signaling pathway, and Toll-like receptor signaling pathway. SASH3 expression was correlated with TMB in 28 cancer types and associated with MSI in 22 cancer types, while there was a negative correlation between SASH3 expression and DNA methylation in diverse human cancer. The high DNA methylation level of SASH3 was correlated with better OS in KIRC and UVM, and associated with poor OS in SKCM. Moreover, we uncover that SASH3 expression was positively associated with the stroma score in 27 cancer types, the microenvironment score, and immune score in 32 cancer types, 38 types of immune cells in 32 cancer types, the 45 immune stimulators, 24 immune inhibitors, 41 chemokines, 18 receptors, and 21 major histocompatibility complex (MHC) molecules in 33 cancer types. Finally, forced SASH3 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and cell migration. Our findings confirmed that SASH3 may be a biomarker for the prognosis and diagnosis of human cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjun Ren
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Chen X, Jiang X, Wang H, Wang C, Wang C, Pan C, Zhou F, Tian J, Niu X, Nie Z, Chen W, Huang X, Pu J, Li C. DNA methylation-regulated SNX20 overexpression correlates with poor prognosis, immune cell infiltration, and low-grade glioma progression. Aging (Albany NY) 2022; 14:5211-5222. [PMID: 35771139 PMCID: PMC9271302 DOI: 10.18632/aging.204144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/14/2022] [Indexed: 12/22/2022]
Abstract
We revealed that SNX20 was up-regulated in LGG, and its higher expression was associated with adverse clinical outcomes and poor clinical characteristics, including WHO grade, IDH mutation, 1p/19q codeletion, and primary therapy outcome. The results of the Cox regression analysis revealed that SNX20 was an independent factor for the prognosis of low-grade glioma. Meanwhile, we also established a nomogram based on SNX20 to predict the 1-, 3-, or 5-year survival in LGG patients. Furthermore, we found that DNA hypomethylation results in its overexpression in LGG. In addition, functional annotation confirmed that SNX20 was mainly involved in the immune response and inflammatory response related signaling pathways, including the T cell receptor signaling pathway, natural killer cell-mediated cytotoxicity, and the NF-kappa B signaling pathway. Finally, we determined that increased expression of SNX20 was correlated with infiltration levels of various immune cells and immune checkpoint in LGG. Importantly, we found that SNX20 was highly expressed in glioma cell lines. Depletion of SNX20 significantly inhibits glioma cell proliferation and migration abilities. This is the first study to identify SNX20 as a new potential prognostic biomarker and characterize the functional roles of SNX20 in the progression of LGG, and provides a novel potential diagnostic and therapeutic biomarker for LGG in the future.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Heping Wang
- Department of Neurosurgery, The second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er 665000, China
| | - Jintao Tian
- Department of Neurosurgery, The second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhi Nie
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Chen
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er 665000, China
| | - Xiaobin Huang
- Department of Neurosurgery, The second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
| | - Jun Pu
- Department of Neurosurgery, The second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|