1
|
Ren Y, Lin X, Liao W, Peng X, Deng J, Zhang Z, Zhan J, Zhou Y, Westhof E, Lilley DMJ, Wang J, Huang L. A general strategy for engineering GU base pairs to facilitate RNA crystallization. Nucleic Acids Res 2025; 53:gkae1218. [PMID: 39721592 PMCID: PMC11797044 DOI: 10.1093/nar/gkae1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
X-ray crystallography is a fundamental technique that provides atomic-level insights into RNA structures. However, obtaining crystals of RNA structures diffracting to high resolution is challenging. We introduce a simple strategy to enhance the resolution limit of RNA crystals by the selective substitution of Watson-Crick pairs by GU pairs within RNA sequences. Our approach has successfully yielded high-resolution structures for eight unique RNA crystals. Notably, six instances showed marked resolution enhancement upon GC/AU to GU base pair substitution, with two cases achieving high-resolution structures from initially poor data. In one case, reverting GU to GC base pairs also improved resolution. Our method facilitated the first structural determinations of the Long Interspersed Nuclear Element-1 and Olfactory Receptor family 4 subfamily K member 15 ribozymes, the 2'-deoxyguanosine-III riboswitch and the Broccoli RNA aptamer. The placement of GU base pairs within the first 5' helical stem of any given RNA species, or in one peripheral stem, is shown to be sufficient. These results offer a simple and effective approach for designing sequences or selecting sequences from homologous sequences, for high-resolution RNA structure determination.
Collapse
Affiliation(s)
- Yangyi Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaowei Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Dafeng Hospital, Chaoyang District, Shantou 515000, China
| | - Wenjian Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Ribopeutic Inc., Guangzhou International Bio Island, Guangzhou 510005, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Eric Westhof
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Strasbourg F-67084, France
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
2
|
Lin SM, Huang HT, Fang PJ, Chang CF, Satange R, Chang CK, Chou SH, Neidle S, Hou MH. Structural basis of water-mediated cis Watson-Crick/Hoogsteen base-pair formation in non-CpG methylation. Nucleic Acids Res 2024; 52:8566-8579. [PMID: 38989613 DOI: 10.1093/nar/gkae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.
Collapse
Affiliation(s)
- Shan-Meng Lin
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Ti Huang
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ju Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Ke Chang
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Stephen Neidle
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ming-Hon Hou
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Madhanagopal B, Rodriguez A, Cordones M, Chandrasekaran AR. Barium Concentration-Dependent Anomalous Electrophoresis of Synthetic DNA Motifs. ACS APPLIED BIO MATERIALS 2024; 7:2704-2709. [PMID: 38635922 PMCID: PMC11110055 DOI: 10.1021/acsabm.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The structural integrity, assembly yield, and biostability of DNA nanostructures are influenced by the metal ions used to construct them. Although high (>10 mM) concentrations of divalent ions are often preferred for assembling DNA nanostructures, the range of ion concentrations and the composition of the assembly products vary for different assembly conditions. Here, we examined the unique ability of Ba2+ to retard double crossover DNA motifs by forming a low mobility species, whose mobility on the gel is determined by the concentration ratio of DNA and Ba2+. The formation of this electrophoretically retarded species is promoted by divalent ions such as Mg2+, Ca2+, and Sr2+ when combined with Ba2+ but not on their own, while monovalent ions such as Na+, K+, and Li+ do not have any effect on this phenomenon. Our results highlight the complex interplay between the metal ions and DNA self-assembly and could inform the design of DNA nanostructures for applications that expose them to multiple ions at high concentrations.
Collapse
Affiliation(s)
- Bharath
Raj Madhanagopal
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arlin Rodriguez
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mireylin Cordones
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arun Richard Chandrasekaran
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
4
|
Sabalette KB, Makarova L, Marcia M. G·U base pairing motifs in long non-coding RNAs. Biochimie 2023; 214:123-140. [PMID: 37353139 DOI: 10.1016/j.biochi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts involved in gene expression regulation and associated with diseases. Despite the unprecedented molecular complexity of these transcripts, recent studies of the secondary and tertiary structure of lncRNAs are starting to reveal the principles of lncRNA structural organization, with important functional implications. It therefore starts to be possible to analyze lncRNA structures systematically. Here, using a set of prototypical and medically-relevant lncRNAs of known secondary structure, we specifically catalogue the distribution and structural environment of one of the first-identified and most frequently occurring non-canonical Watson-Crick interactions, the G·U base pair. We compare the properties of G·U base pairs in our set of lncRNAs to those of the G·U base pairs in other well-characterized transcripts, like rRNAs, tRNAs, ribozymes, and riboswitches. Furthermore, we discuss how G·U base pairs in these targets participate in establishing interactions with proteins or miRNAs, and how they enable lncRNA tertiary folding by forming intramolecular or metal-ion interactions. Finally, by identifying highly-G·U-enriched regions of yet unknown function in our target lncRNAs, we provide a new rationale for future experimental investigation of these motifs, which will help obtain a more comprehensive understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Karina Belen Sabalette
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Liubov Makarova
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
5
|
Kiliszek A, Pluta M, Bejger M, Rypniewski W. Structure and thermodynamics of a UGG motif interacting with Ba2+ and other metal ions: accommodating changes in the RNA structure and the presence of a G(syn)-G(syn) pair. RNA (NEW YORK, N.Y.) 2022; 29:rna.079414.122. [PMID: 36319090 PMCID: PMC9808570 DOI: 10.1261/rna.079414.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The self-complementary triplet 5'UGG3'/5'UGG3' is a particular structural motif containing noncanonical G-G pair and two U·G wobble pairs. It constitutes a specific structural and electrostatic environment attracting metal ions, particularly Ba2+ ions. Crystallographic research has shown that two Ba2+ cations are located in the major groove of the helix and interact directly with the UGG triplet. A comparison with the unliganded structure has revealed global changes in the RNA structure in the presence of metal ions, whereas thermodynamic measurements have shown increased stability. Moreover, in the structure with Ba2+, an unusual noncanonical G(syn)-G(syn) pair is observed instead of the common G(anti)-G(syn). We further elucidate the metal binding properties of the UGG/UGG triplet by performing crystallographic and thermodynamic studies using DSC and UV melting with other metal ions. The results explain the preferences of the UGG sequence for Ba2+ cations and point to possible applications of this metal-binding propensity.
Collapse
|