1
|
Zhang H, Sim G, Kehling AC, Adhav VA, Savidge A, Pastore B, Tang W, Nakanishi K. Target cleavage and gene silencing by Argonautes with cityRNAs. Cell Rep 2024; 43:114806. [PMID: 39368090 PMCID: PMC11533134 DOI: 10.1016/j.celrep.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
TinyRNAs (tyRNAs) are ≤17-nt guide RNAs associated with Argonaute proteins (AGOs), and certain 14-nt cleavage-inducing tyRNAs (cityRNAs) catalytically activate human Argonaute3 (AGO3). We present the crystal structure of AGO3 in complex with a cityRNA, 14-nt miR-20a, and its complementary target, revealing a different trajectory for the guide-target duplex from that of its ∼22-nt microRNA-associated AGO counterpart. cityRNA-loaded Argonaute2 (AGO2) and AGO3 enhance their endonuclease activity when the immediate 5' upstream region of the tyRNA target site (UTy) includes sequences with low affinity for AGO. We propose a model where cityRNA-loaded AGO2 and AGO3 efficiently cleave fully complementary tyRNA target sites unless they directly recognize the UTy. To investigate their gene silencing, we devised systems for loading endogenous AGOs with specific tyRNAs and demonstrated that, unlike microRNAs, cityRNA-mediated silencing heavily relies on target cleavage. Our study uncovered that AGO exploits cityRNAs for target recognition differently from microRNAs and alters gene silencing.
Collapse
Affiliation(s)
- Huaqun Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - GeunYoung Sim
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Audrey C Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vishal Annasaheb Adhav
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Savidge
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Pastore
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen Tang
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Hom Choudhury S, Bhattacharjee S, Mukherjee K, Bhattacharyya SN. Human antigen R transfers miRNA to Syntaxin 5 to synergize miRNA export from activated macrophages. J Biol Chem 2024; 300:107170. [PMID: 38492777 PMCID: PMC11040126 DOI: 10.1016/j.jbc.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Intercellular miRNA exchange acts as a key mechanism to control gene expression post-transcriptionally in mammalian cells. Regulated export of repressive miRNAs allows the expression of inflammatory cytokines in activated macrophages. Intracellular trafficking of miRNAs from the endoplasmic reticulum to endosomes is a rate-determining step in the miRNA export process and plays an important role in controlling cellular miRNA levels and inflammatory processes in macrophages. We have identified the SNARE protein Syntaxin 5 (STX5) to show a synchronized expression pattern with miRNA activity loss in activated mammalian macrophage cells. STX5 is both necessary and sufficient for macrophage activation and clearance of the intracellular pathogen Leishmania donovani from infected macrophages. Exploring the mechanism of how STX5 acts as an immunostimulant, we have identified the de novo RNA-binding property of this SNARE protein that binds specific miRNAs and facilitates their accumulation in endosomes in a cooperative manner with human ELAVL1 protein, Human antigen R. This activity ensures the export of miRNAs and allows the expression of miRNA-repressed cytokines. Conversely, in its dual role in miRNA export, this SNARE protein prevents lysosomal targeting of endosomes by enhancing the fusion of miRNA-loaded endosomes with the plasma membrane to ensure accelerated release of extracellular vesicles and associated miRNAs.
Collapse
Affiliation(s)
- Sourav Hom Choudhury
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreya Bhattacharjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA.
| |
Collapse
|
3
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
4
|
Sim G, Kehling AC, Park MS, Divoky C, Zhang H, Malhotra N, Secor J, Nakanishi K. Determining the defining lengths between mature microRNAs/small interfering RNAs and tinyRNAs. Sci Rep 2023; 13:19761. [PMID: 37957252 PMCID: PMC10643408 DOI: 10.1038/s41598-023-46562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are loaded into Argonaute (AGO) proteins, forming RNA-induced silencing complexes (RISCs). The assembly process establishes the seed, central, 3' supplementary, and tail regions across the loaded guide, enabling the RISC to recognize target RNAs for silencing. This guide segmentation is caused by anchoring the 3' end at the AGO PAZ domain, but the minimum guide length required for the conformation remains to be studied because the current miRNA size defined by Dicer processing is ambiguous. Using a 3' → 5' exonuclease ISG20, we determined the lengths of AGO-associated miR-20a and let-7a with 3' ends that no longer reach the PAZ domain. Unexpectedly, miR-20a and let-7a needed different lengths, 19 and 20 nt, respectively, to maintain their RISC conformation. This difference can be explained by the low affinity of the PAZ domain for the adenosine at g19 of let-7a, suggesting that the tail-region sequence slightly alters the minimum guide length. We also present that 17-nt guides are sufficiently short enough to function as tinyRNAs (tyRNAs) whose 3' ends are not anchored at the PAZ domain. Since tyRNAs do not have the prerequisite anchoring for the standardized guide segmentation, they would recognize targets differently from miRNAs and siRNAs.
Collapse
Affiliation(s)
- GeunYoung Sim
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Audrey C Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Cameron Divoky
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Nipun Malhotra
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Jackson Secor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Kotaro Nakanishi
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Sim G, Kehling AC, Park MS, Divoky C, Zhang H, Malhotra N, Secor J, Nakanishi K. Determining the defining lengths between mature microRNAs/small interfering RNAs and tinyRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564437. [PMID: 37961191 PMCID: PMC10634876 DOI: 10.1101/2023.10.27.564437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are loaded into Argonaute (AGO) proteins, forming RNA-induced silencing complexes (RISCs). The assembly process establishes the seed, central, 3' supplementary, and tail regions across the loaded guide, enabling the RISC to recognize and cleave target RNAs. This guide segmentation is caused by anchoring the 3' end at the AGO PAZ domain, but the minimum guide length required for the conformation remains to be studied because there was no method by which to do so. Using a 3'→5' exonuclease ISG20, we determined the lengths of AGO-associated miR-20a and let-7a with 3' ends that no longer reach the PAZ domain. Unexpectedly, miR-20a and let-7a needed different lengths, 19 and 20 nt, respectively, to maintain their RISC conformation. This difference can be explained by the low affinity of the PAZ domain for the adenosine at g19 of let-7a, suggesting that the tail-region sequence slightly alters the minimum guide length. We also present that 17-nt guides are sufficiently short enough to function as tinyRNAs (tyRNAs) whose 3' ends are not anchored at the PAZ domain. Since tyRNAs do not have the prerequisite anchoring for the standardized guide segmentation, they would recognize targets differently from miRNAs and siRNAs.
Collapse
Affiliation(s)
- GeunYoung Sim
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Audrey C. Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Cameron Divoky
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Nipun Malhotra
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jackson Secor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Manganese-dependent microRNA trimming by 3'→5' exonucleases generates 14-nucleotide or shorter tiny RNAs. Proc Natl Acad Sci U S A 2022; 119:e2214335119. [PMID: 36508664 PMCID: PMC9907110 DOI: 10.1073/pnas.2214335119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are about 22-nucleotide (nt) noncoding RNAs forming the effector complexes with Argonaute (AGO) proteins to repress gene expression. Although tiny RNAs (tyRNAs) shorter than 19 nt have been found to bind to plant and vertebrate AGOs, their biogenesis remains a long-standing question. Here, our in vivo and in vitro studies show several 3'→5' exonucleases, such as interferon-stimulated gene 20 kDa (ISG20), three prime repair exonuclease 1 (TREX1), and ERI1 (enhanced RNAi, also known as 3'hExo), capable of trimming AGO-associated full-length miRNAs to 14-nt or shorter tyRNAs. Their guide trimming occurs in a manganese-dependent manner but independently of the guide sequence and the loaded four human AGO paralogs. We also show that ISG20-mediated guide trimming makes Argonaute3 (AGO3) a slicer. Given the high Mn2+ concentrations in stressed cells, virus-infected cells, and neurodegeneration, our study sheds light on the roles of the Mn2+-dependent exonucleases in remodeling gene silencing.
Collapse
|
7
|
Sim G, Kehling AC, Park MS, Secor J, Divoky C, Zhang H, Malhotra N, Bhagdikar D, El-wahaband EA, Nakanishi K. Manganese-dependent microRNA trimming by 3’→5’ exonucleases generates 14-nucleotide or shorter tiny RNAs.. [DOI: 10.1101/2022.10.06.511180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractMicroRNAs (miRNAs) are about 22-nucleotide (nt) non-coding RNAs forming the effector complexes with Argonaute (AGO) proteins to repress gene expression. Although tiny RNAs (tyRNAs) shorter than 19 nt have been found to bind to plant and vertebrate AGOs, their biogenesis remains a long-standing question. Here, our in vivo and in vitro studies show several 3’→5’ exonucleases, such as interferon-stimulated gene 20 kDa (ISG20), three prime repair exonuclease 1 (TREX1), and ERI1 (enhanced RNAi, also known as 3’hExo), capable of trimming AGO-associated full-length miRNAs to 14 nt or shorter tyRNAs. Their guide trimming occurs in a manganese-dependent manner but independently of the guide sequence and the loaded four human AGO paralogs. We also show that ISG20-mediated guide trimming makes Argonaute3 (AGO3) a slicer. Given the high Mn2+ concentrations in stressed cells, virus-infected cells, and neurodegeneration, our study sheds light on the roles of the Mn2+-dependent exonucleases in remodeling gene silencing.
Collapse
|
8
|
Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res 2022; 50:6618-6638. [PMID: 35736234 PMCID: PMC9262622 DOI: 10.1093/nar/gkac519] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) bind to complementary target RNAs and regulate their gene expression post-transcriptionally. These non-coding regulatory RNAs become functional after loading into Argonaute (AGO) proteins to form the effector complexes. Humans have four AGO proteins, AGO1, AGO2, AGO3 and AGO4, which share a high sequence identity. Since most miRNAs are found across the four AGOs, it has been thought that they work redundantly, and AGO2 has been heavily studied as the exemplified human paralog. Nevertheless, an increasing number of studies have found that the other paralogs play unique roles in various biological processes and diseases. In the last decade, the structural study of the four AGOs has provided the field with solid structural bases. This review exploits the completed structural catalog to describe common features and differences in target specificity across the four AGOs.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- To whom correspondence should be addressed. Tel: +1 614 688 2188;
| |
Collapse
|
9
|
Koopal B, Potocnik A, Mutte SK, Aparicio-Maldonado C, Lindhoud S, Vervoort JJM, Brouns SJJ, Swarts DC. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell 2022; 185:1471-1486.e19. [PMID: 35381200 PMCID: PMC9097488 DOI: 10.1016/j.cell.2022.03.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Argonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood. We demonstrate that short prokaryotic Argonaute and the associated TIR-APAZ (SPARTA) proteins form heterodimeric complexes. Upon guide RNA-mediated target DNA binding, four SPARTA heterodimers form oligomers in which TIR domain-mediated NAD(P)ase activity is unleashed. When expressed in Escherichia coli, SPARTA is activated in the presence of highly transcribed multicopy plasmid DNA, which causes cell death through NAD(P)+ depletion. This results in the removal of plasmid-invaded cells from bacterial cultures. Furthermore, we show that SPARTA can be repurposed for the programmable detection of DNA sequences. In conclusion, our work identifies SPARTA as a prokaryotic immune system that reduces cell viability upon RNA-guided detection of invading DNA.
Collapse
Affiliation(s)
- Balwina Koopal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Ana Potocnik
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Cristian Aparicio-Maldonado
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Jacques J M Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|