1
|
Geirnaert F, Kerkhove L, Montay-Gruel P, Gevaert T, Dufait I, De Ridder M. Exploring the Metabolic Impact of FLASH Radiotherapy. Cancers (Basel) 2025; 17:133. [PMID: 39796760 PMCID: PMC11720285 DOI: 10.3390/cancers17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining tumor control, a phenomenon termed the FLASH effect. Despite promising outcomes, the precise mechanisms underlying the FLASH effect remain elusive and are a focal point of current research. This review explores the metabolic and cellular responses to FLASH RT compared to CRT, with particular focus on the differential impacts on normal and tumor tissues. Key findings suggest that FLASH RT may mitigate damage in healthy tissues via altered reactive oxygen species (ROS) dynamics, which attenuate downstream oxidative damage. Studies indicate the FLASH RT influences iron metabolism and lipid peroxidation pathways differently than CRT. Additionally, various studies indicate that FLASH RT promotes the preservation of mitochondrial integrity and function, which helps maintain apoptotic pathways in normal tissues, attenuating damage. Current knowledge of the metabolic influences following FLASH RT highlights its potential to minimize toxicity in normal tissues, while also emphasizing the need for further studies in biologically relevant, complex systems to better understand its clinical potential. By targeting distinct metabolic pathways, FLASH RT could represent a transformative advance in RT, ultimately improving the therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Febe Geirnaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Pierre Montay-Gruel
- Radiation Oncology Department, Iridium Netwerk, 2610 Antwerp, Belgium;
- Antwerp Research in Radiation Oncology (AreRO), Center for Oncological Research (CORE), University of Antwerp, 2020 Antwerp, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| |
Collapse
|
2
|
Wu H, Fan Y, Bao Y, Zhou Q, Xu L, Xu Y. Construction of a ferroptosis and hypoxia-related gene signature in cervical cancer to assess tumour immune microenvironment and predict prognosis. J OBSTET GYNAECOL 2024; 44:2321323. [PMID: 38425023 DOI: 10.1080/01443615.2024.2321323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND This study aimed to investigate the potential role of ferroptosis/hypoxia-related genes in cervical cancer to improve early management and treatment of cervical cancer. METHODS All data were downloaded from public databases. Ferroptosis/hypoxia-related genes associated with cervical cancer prognosis were selected to construct a risk score model. The relationship between risk score and clinical features, immune microenvironment and prognosis were analysed. RESULTS Risk score model was constructed based on eight signature genes. Drug prediction analysis showed that bevacizumab and cisplatin were related to vascular endothelial growth factor A. Risk score, as an independent prognostic factor of cervical cancer, had a good survival prediction effect. The two groups differed significantly in degree of immune cell infiltration, gene expression, tumour mutation burden and somatic variation. CONCLUSIONS We developed a novel prognostic gene signature combining ferroptosis/hypoxia-related genes, which provides new ideas for individual treatment of cervical cancer.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Gynecology, Chengdu Second People's Hospital, Chengdu, China
| | - Yayun Fan
- Department of Gynecology, Chengdu Second People's Hospital, Chengdu, China
| | - Yuanyuan Bao
- Department of Gynecology, Chengdu Second People's Hospital, Chengdu, China
| | - Qing Zhou
- Department of Gynecology, Chengdu Second People's Hospital, Chengdu, China
| | - Lei Xu
- Department of Gynecology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, PR China
| | - Yao Xu
- Department of Gynecology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, PR China
| |
Collapse
|
3
|
梁 钰, 李 凌, 刘 柏, 高 洁, 陈 星, 李 进, 柯 阳, 陈 勇. [Research Advances in the Roles of High-Altitude Hypoxic Stress in Hepatocellular Carcinoma]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1436-1445. [PMID: 39990853 PMCID: PMC11839340 DOI: 10.12182/20241160605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 02/25/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent malignant tumors causing the highest mortality globally, imposes an especially heavy burden of disease in China. Individuals living in high-altitude areas have a lower incidence of and mortality resulting from HCC compared with those in low-altitude regions do, potentially due to adaptive evolution in responses to hypoxic stress. Notably, high-altitude hypoxic stress is associated with the development and progression of HCC. Hypoxic stress may be involved in the development and progression of HCC by modulating the senescence, apoptosis, metabolism, tumor microenvironment, and tumor immunity of HCC cells. Additionally, the latest clinical findings indicate that high-altitude hypoxic environment has a significant impact on liver regeneration after HCC resection surgery. However, there is still a debate going on regarding whether high-altitude hypoxic stress promotes or inhibits the progression of HCC. This review covers three main aspects, the impact of adaptive evolution to high-altitude hypoxic stress on the development and progression of HCC in long-term residents of high-altitude areas, the effects of high-altitude hypoxic stress on the senescence, apoptosis, metabolism, tumor microenvironment, tumor metabolism, and tumor immunity of HCC cells, and the effect of high-altitude hypoxic stress on liver regeneration after HCC resection. We discussed the effect of changes in oxygen concentrations, cellular context, and tissue microenvironment on HCC development and progression. Moreover, we highlighted the potential for using research findings on mechanisms underlying high-altitude hypoxic stress to optimize HCC treatment strategies.
Collapse
Affiliation(s)
- 钰博 梁
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 凌娟 李
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 柏杨 刘
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 洁 高
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 星明 陈
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 进 李
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 阳 柯
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 勇彬 陈
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
- 郑州大学第一附属医院 (郑州 450052)The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Kerkhove L, Geirnaert F, Dufait I, De Ridder M. Ferroptosis: Frenemy of Radiotherapy. Int J Mol Sci 2024; 25:3641. [PMID: 38612455 PMCID: PMC11011408 DOI: 10.3390/ijms25073641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.
Collapse
Affiliation(s)
| | | | | | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.K.); (F.G.); (I.D.)
| |
Collapse
|
5
|
Ruan S, Wang H, Zhang Z, Yan Q, Chen Y, Cui J, Huang S, Zhou Q, Zhang C, Hou B. Identification and validation of stemness-based and ferroptosis-related molecular clusters in pancreatic ductal adenocarcinoma. Transl Oncol 2024; 41:101877. [PMID: 38262107 PMCID: PMC10832490 DOI: 10.1016/j.tranon.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an extremely poor prognosis. Cancer stem cells (CSCs) are considered to be responsible for the poor survival, recurrence and therapy resistance of PDAC. Ferroptosis plays a crucial role in the sustain and survival of CSCs. Here, we employed a rigorous evaluation of multiple datasets to identify a novel stemness-based and ferroptosis-related genes (SFRGs) signature to access the potential prognostic application. This work we retrieved RNA-sequencing and clinical annotation data from the TCGA, ICGC, GTEx and GEO database, and acquired 26 stem cell gene sets and 259 ferroptosis genes from StemChecker database and FerrDb database, respectively. Based on consensus clustering and ssGSEA analysis, we identified two expression patterns of CSCs traits (C1 and C2). Then, WGCNA analysis was implemented to screen out hub module genes correlated with stemness. Furthermore, differential expression analysis, Pearson correlation analysis, and the Least absolute shrinkage and selection operator (LASSO) and Cox regression were performed to identify the SFRGs and to construct model. In addition, the differences in prognosis, tumor microenvironment (TME) components and therapy responses were evaluated between two risk groups. Finally, we verified the most influential marker ARNTL2 experimentally by western blot, qRT-PCR, sphere formation assay, mitoscreen assay, intracellular iron concentration determination and MDA determination assays. In conclusion, we developed a stemness-based and ferroptosis-related prognostic model, which could help predict overall survival for PDAC patients. Targeting ferroptosis may be a promising therapeutic strategy to inhibit PDAC progression by suppressing CSCs.
Collapse
Affiliation(s)
- Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hailiang Wang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai 264400, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China.
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China; Heyuan People's Hospital, Heyuan 517000, China.
| |
Collapse
|
6
|
Luo J, Huang Y, Wu J, Dai L, Dong M, Cheng B. A novel hypoxia-associated gene signature for prognosis prediction in head and neck squamous cell carcinoma. BMC Oral Health 2023; 23:864. [PMID: 37964257 PMCID: PMC10647095 DOI: 10.1186/s12903-023-03489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of head and neck, which seriously threatens human life and health. However, the mechanism of hypoxia-associated genes (HAGs) in HNSCC remains unelucidated. This study aims to establish a hypoxia-associated gene signature and the nomogram for predicting the prognosis of patients with HNSCC. METHODS Previous literature reports provided a list of HAGs. The TCGA database provided genetic and clinical information on HNSCC patients. First, a hypoxia-associated gene risk model was constructed for predicting overall survival (OS) in HNSCC patients and externally validated in four GEO datasets (GSE27020, GSE41613, GSE42743, and GSE117973). Then, immune status and metabolic pathways were analyzed. A nomogram was constructed and assessed the predictive value. Finally, experimental validation of the core genes was performed by qRT-PCR. RESULTS A HNSCC prognostic model was constructed based on 8 HAGs. This risk model was validated in four external datasets and exhibited high predictive value in various clinical subgroups. Significant differences in immune cell infiltration levels and metabolic pathways were found between high and low risk subgroups. The nomogram was highly accurate for predicting OS in HNSCC patients. CONCLUSIONS The 8 hypoxia-associated gene signature can serve as novel independent prognostic indicators in HNSCC patients. The nomogram combining the risk score and clinical stage enhanced predictive performance in predicting OS compared to the risk model and clinical characteristics alone.
Collapse
Affiliation(s)
- Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuejiao Huang
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Stomatology, Wuhan No. 1 Hospital, No. 215 Zhongshan Road, Qiaokou District, Wuhan, 430030, China.
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
7
|
Huang Z, Xia H, Cui Y, Yam JWP, Xu Y. Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:207-218. [PMID: 36406319 PMCID: PMC9647096 DOI: 10.14218/jcth.2022.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and highly heterogeneous malignancies worldwide. Despite the rapid development of multidisciplinary treatment and personalized precision medicine strategies, the overall survival of HCC patients remains poor. The limited survival benefit may be attributed to difficulty in early diagnosis, the high recurrence rate and high tumor heterogeneity. Ferroptosis, a novel mode of cell death driven by iron-dependent lipid peroxidation, has been implicated in the development and therapeutic response of various tumors, including HCC. In this review, we discuss the regulatory network of ferroptosis, describe the crosstalk between ferroptosis and HCC-related signaling pathways, and elucidate the potential role of ferroptosis in various treatment modalities for HCC, such as systemic therapy, radiotherapy, immunotherapy, interventional therapy and nanotherapy, and applications in the diagnosis and prognosis of HCC, to provide a theoretical basis for the diagnosis and treatment of HCC to effectively improve the survival of HCC patients.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
8
|
He L, Wang B, Wang X, Liu Y, Song X, Zhang Y, Li X, Yang H. Uncover diagnostic immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation-related CCR5, CD86, CD8A, ITGAM, and PTPRC in kidney transplantation patients with allograft rejection. Ren Fail 2022; 44:1850-1865. [PMID: 36330810 PMCID: PMC9639483 DOI: 10.1080/0886022x.2022.2141648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify predictive immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation (EMT)-related biomarkers, pathways and new drugs in allograft rejection in kidney transplant patients. First, gene expression data were downloaded followed by identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) analysis. Second, diagnostic model was construction based on key genes, followed by correlation analysis between immune/hypoxia/ferroptosis/EMT and key diagnostic genes. Finally, drug prediction of diagnostic key genes was carried out. Five diagnostic genes were further identified, including CCR5, CD86, CD8A, ITGAM, and PTPRC, which were positively correlated with allograft rejection after the kidney transplant. Highly infiltrated immune cells, highly expression of hypoxia-related genes and activated status of EMT were significantly positively correlated with five diagnostic genes. Interestingly, suppressors of ferroptosis (SOFs) and drivers of ferroptosis (DOFs) showed a complex regulatory relationship between ferroptosis and five diagnostic genes. CD86, CCR5, and ITGAM were respectively drug target of ABATACEPT, MARAVIROC, and CLARITHROMYCIN. PTPRC was drug target of both PREDNISONE and EPOETIN BETA. In conclusion, the study could be useful in understanding changes in the microenvironment within transplantation, which may promote or sustain the development of allograft rejection after kidney transplantation.
Collapse
Affiliation(s)
- Long He
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Boqian Wang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xueyi Wang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Yuewen Liu
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xing Song
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Yijian Zhang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xin Li
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Hongwei Yang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| |
Collapse
|
9
|
Liu Z, Wang J, Li S, Li L, Li L, Li D, Guo H, Gao D, Liu S, Ruan C, Dang X. Prognostic prediction and immune infiltration analysis based on ferroptosis and EMT state in hepatocellular carcinoma. Front Immunol 2022; 13:1076045. [PMID: 36591279 PMCID: PMC9797854 DOI: 10.3389/fimmu.2022.1076045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background Ferroptosis is one of the main mechanisms of sorafenib against hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) plays an important role in the heterogeneity, tumor metastasis, immunosuppressive microenvironment, and drug resistance of HCC. However, there are few studies looking into the relationship between ferroptosis and EMT and how they may affect the prognosis of HCC collectively. Methods We downloaded gene expression and clinical data of HCC patients from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases for prognostic model construction and validation respectively. The Least absolute shrinkage and selection operator (LASSO) Cox regression was used for model construction. The predictive ability of the model was assessed by Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve. We performed the expression profiles analysis to evaluate the ferroptosis and EMT state. CIBERSORT and single-sample Gene Set Enrichment Analysis (ssGSEA) methods were used for immune infiltration analysis. Results A total of thirteen crucial genes were identified for ferroptosis-related and EMT-related prognostic model (FEPM) stratifying patients into two risk groups. The high-FEPM group had shorter overall survivals than the low-FEPM group (p<0.0001 in the TCGA cohort and p<0.05 in the ICGC cohort). The FEPM score was proved to be an independent prognostic risk factor (HR>1, p<0.01). Furthermore, the expression profiles analysis suggested that the high-FEPM group appeared to have a more suppressive ferroptosis status and a more active EMT status than the low- FEPM group. Immune infiltration analysis showed that the myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) were highly enriched in the high-FEPM group. Finally, a nomogram enrolling FEPM score and TNM stage was constructed showing outstanding predictive capacity for the prognosis of patients in the two cohorts. Conclusion In conclusion, we developed a ferroptosis-related and EMT-related prognostic model, which could help predict overall survival for HCC patients. It might provide a new idea for predicting the response to targeted therapies and immunotherapies in HCC patients.
Collapse
Affiliation(s)
- Zhaochen Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Jingju Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suxin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Luhao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Huahu Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Dute Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengshuo Ruan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China,*Correspondence: Xiaowei Dang,
| |
Collapse
|
10
|
Dong Z, Liang P, Guan G, Yin B, Wang Y, Yue R, Zhang X, Song G. Overcoming Hypoxia‐Induced Ferroptosis Resistance via a
19
F/
1
H‐MRI Traceable Core‐Shell Nanostructure. Angew Chem Int Ed Engl 2022; 61:e202206074. [DOI: 10.1002/anie.202206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
11
|
Zhang J, Cui Y. Integrative analysis identifies potential ferroptosis-related genes of hypoxia adaptation in yak. Front Vet Sci 2022; 9:1022972. [PMID: 36304416 PMCID: PMC9592977 DOI: 10.3389/fvets.2022.1022972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
There are studies on the hypoxia adaptation in yak, but there are few studies on the regulation of ferroptosis by hypoxia. This study was the first time to explore ferroptosis-related genes about hypoxia in yak. In this study, the oviduct epithelial cells between yak and bovine are performed by integrative analysis for functions, regulating network and hub genes. The results showed 29 up-regulated ferroptosis genes and 67 down-regulated ferroptosis genes, and GO-KEGG analysis showed that up-regulated differentially expressed genes (DEGs) were significantly enriched in ribosome pathway and oxidative phosphorylation pathway. Down-regulated DEGs were significantly enriched in longevity regulating pathway-mammal pathway. Mitophagy-Animal Pathway was a significant enrichment pathway for the up-regulated differentially expressed ferroptosis genes (DE-FRGs). HIF-1 signaling pathway is a significant pathway for the down-regulated DE-FRGs. By constructing DE-FRGs protein-protein interaction (PPI) network, 10 hub DE-FRGs (Jun, STAT3, SP1, HIF1A, Mapk1, Mapk3, Rela, Ulk1, CDKN1A, EPAS1) were obtained. The bta-mir-21-5p, bta-mir-10a and bta-mir-17-5p related to STAT3 were predicted. The results of this study indicated the important genes and pathways of the hypoxia in yak, and it was the first time to study ferroptosis genes and pathways related to the hypoxia adaptation by bulk-seq in yak. This study provided sufficient transcriptome datas for hypoxia adaptation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China,*Correspondence: Yan Cui
| |
Collapse
|
12
|
Prospective Application of Ferroptosis in Hypoxic Cells for Tumor Radiotherapy. Antioxidants (Basel) 2022; 11:antiox11050921. [PMID: 35624785 PMCID: PMC9137794 DOI: 10.3390/antiox11050921] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Radiation therapy plays an increasingly important role in cancer treatment. It can inhibit the progression of various cancers through radiation-induced DNA breakage and reactive oxygen species (ROS) overload. Unfortunately, solid tumors, such as breast and lung cancer, often develop a hypoxic microenvironment due to insufficient blood supply and rapid tumor proliferation, thereby affecting the effectiveness of radiation therapy. Restraining hypoxia and improving the curative effect of radiotherapy have become difficult problems. Ferroptosis is a new type of cell death caused by lipid peroxidation due to iron metabolism disorders and ROS accumulation. It plays an important role in both hypoxia and radiotherapy and can enhance the radiosensitivity of hypoxic tumor cells by amplifying oxidative stress or inhibiting antioxidant regulation. In this review, we summarize the internal relationship and related mechanisms between ferroptosis and hypoxia, thus exploring the possibility of inducing ferroptosis to improve the prognosis of hypoxic tumors.
Collapse
|
13
|
Li W, Liu J, Zhang D, Gu L, Zhao H. The Prognostic Significance and Potential Mechanism of Ferroptosis-Related Genes in Hepatocellular Carcinoma. Front Genet 2022; 13:844624. [PMID: 35559035 PMCID: PMC9086291 DOI: 10.3389/fgene.2022.844624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis exerts a pivotal role in the formation and dissemination processes of hepatocellular carcinoma (HCC). The heterogeneity of ferroptosis and the link between ferroptosis and immune responses have remained elusive. Based on ferroptosis-related genes (FRGs) and HCC patients from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) cohorts, we comprehensively explored the heterogeneous ferroptosis subtypes. The genetic alterations, consensus clustering and survival analysis, immune infiltration, pathway enrichment analysis, integrated signature development, and nomogram building were further investigated. Kaplan-Meier plotter confirmed statistically differential probabilities of survival among the three subclusters. Immune infiltration analysis showed there were clear differences among the types of immune cell infiltration, the expression of PD-L1, and the distribution of TP53 mutations among the three clusters. Univariate Cox regression analysis, random survival forest, and multivariate Cox analysis were used to identify the prognostic integrated signature, including MED8, PIGU, PPM1G, RAN, and SNRPB. Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) curves revealed the satisfactory predictive potential of the five-gene model. Subsequently, a nomogram was established, which combined the signature with clinical factors. The nomogram including the ferroptosis-based signature was conducted and showed some clinical net benefits. These results facilitated an understanding of ferroptosis and immune responses for HCC.
Collapse
Affiliation(s)
- Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Jun Liu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Dangui Zhang
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liming Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Center of Pathogen Biology and Immunology, Shantou University Medical College, Shantou, China
| | - Hetong Zhao
- Department of Traditional Chinese Medicine, Navy NO.905 Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|