1
|
Wang B, Zhao F, Zhou Z, Wang J, Huang XH, Qin L. The effect mechanism of different natural spices on the formation of associated hazardous compounds in roasted chicken. Food Chem 2025; 474:143170. [PMID: 39921977 DOI: 10.1016/j.foodchem.2025.143170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Exploring the interaction mechanism between the key components in spices and the hazardous compounds in thermally processed foods will help in improving the safety level of processed foods, which is of great significance to the food field. This paper investigated the inhibitory regularities and mechanisms of 6 natural spices on 15 associated hazardous compounds in the chicken. Dried ginger and black pepper had the best inhibitory effects, dried ginger had inhibitory effects on 13 hazardous compounds, and the average inhibition rate ranged from 20.04 % to 100 %. Black pepper could inhibit the formation of 15 hazardous compounds, with the average inhibition rate ranging from 3.10 % to 100 %. Such research results will help to develop natural inhibitors of hazardous compounds and improve the quality of roast chicken.
Collapse
Affiliation(s)
- Bo Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Feng Zhao
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Zhou
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ji Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Cooper G, North R, Hunt-Smith T, Larson J, Rennie M, Bailey ML, Scarlata S, Merzdorf CS, Bothner B. Persistent Metabolic Changes Are Induced by 24 h Low-Dose Lead (Pb) Exposure in Zebrafish Embryos. Int J Mol Sci 2025; 26:1050. [PMID: 39940818 PMCID: PMC11817773 DOI: 10.3390/ijms26031050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Lead (Pb) is a heavy metal associated with a range of toxic effects. Relatively few studies attempt to understand the impact of lead on development from a mechanistic perspective. Danio rerio (zebrafish) embryos are a model organism for studying the developmental consequences of exposure to chemical agents. This study examined the metabolome of developing zebrafish embryos exposed to 5 ppb, 15 ppb, 150 ppb, and 1500 ppb Pb concentrations during the first 24 h post fertilization, followed by 24 h of unexposed development and harvest at 48 h. Untargeted metabolomics and multivariate analysis revealed that various Pb exposures differentially affected the embryonic metabolome. Pathway analyses showed the dysregulation of biopterin, purine, alanine, and aspartate metabolism. Inductively coupled plasma mass spectrometry demonstrated Pb accumulation in embryos. Additionally, decreases in oxidation-reduction ratios were observed in 5-150 ppb groups but not in the 1500 ppb exposure group. This finding, along with several metabolite abundances, suggests a hormetic effect of Pb concentrations on the developing zebrafish metabolome. Together, these data reveal persistent global changes in the embryonic metabolome, pin-point biomarkers for Pb exposure, unveil dose-dependent relationships, and reflect Pb-induced changes in cellular energy. This work highlights aberrant processes and persistent changes underlying low-dose heavy metal exposure during early development.
Collapse
Affiliation(s)
- Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| | - Ryan North
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.N.); (T.H.-S.)
| | - Tyler Hunt-Smith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.N.); (T.H.-S.)
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| | - Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (M.R.); (S.S.)
| | - Marguerite L. Bailey
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (M.R.); (S.S.)
| | - Christa S. Merzdorf
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.N.); (T.H.-S.)
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (J.L.); (M.L.B.)
| |
Collapse
|
3
|
Elwej A, Ghorbel I, Chaabane M, Chelly S, Boudawara T, Zeghal N. Mitigating effects of selenium and zinc on oxidative stress and biochemical and histopathological changes in lung during prenatal and lactational exposure rats to barium chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50892-50904. [PMID: 39107636 DOI: 10.1007/s11356-024-34483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Selenium (Se) and zinc (Zn) are essential trace elements with antioxidant properties, and their supplementation has been shown to be protective against the toxicity of various environmental and dietary substances. The aim of this study was to investigate the potential protective effect of selenium and zinc as adjuvants against barium (Ba) toxicity in lactating rats and their offspring. The pregnant rats were divided into six groups: the first as control; group 2 received barium (67 ppm) in the drinking water; group 3 had combined Ba + Se (0.5 mg/kg) in the diet; group 4 received Zn (50 mg/kg bw) by gavage together with Ba; groups 5 and 6, positive controls, were treated with selenium (0.5 mg/kg) and zinc (50 mg/kg bw), respectively. MDA, H2O2, AOPP, CAT, GPx, and SOD levels were measured and lung histopathology was performed. Our results showed that barium administration caused lung damage as evidenced by an increase in MDA, H2O2, and AOPP levels and a decrease in the activities of CAT, GPx, and SOD in mothers and their offspring. A decrease in lung GSH, NPSH, and MT levels was also observed. Supplementation of Ba-treated rats with Se and/or Zn significantly improved the pulmonary antioxidant status of mothers and their offspring. Histopathological examinations were also consistent with the results of biochemical parameters, suggesting the beneficial role of Se and Zn supplementation, as evidenced by less accumulation of collagen fibers as studied by hematoxylin and eosin (H&E) and Masson's trichrome staining. In conclusion, we demonstrate the adverse effects of maternal barium exposure during pregnancy and on neonatal lung health and the protective effects of selenium and zinc in preventing the adverse effects of barium exposure.
Collapse
Affiliation(s)
- Awatef Elwej
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia.
| | - Imen Ghorbel
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Mariem Chaabane
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Sabrine Chelly
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, 3029, Sfax, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
4
|
Ilyas K, Iqbal H, Akash MSH, Rehman K, Hussain A. Heavy metal exposure and metabolomics analysis: an emerging frontier in environmental health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37963-37987. [PMID: 38780845 DOI: 10.1007/s11356-024-33735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Exposure to heavy metals in various populations can lead to extensive damage to different organs, as these metals infiltrate and bioaccumulate in the human body, causing metabolic disruptions in various organs. To comprehensively understand the metal homeostasis, inter-organ "traffic," and extensive metabolic alterations resulting from heavy metal exposure, employing complementary analytical methods is crucial. Metabolomics is pivotal in unraveling the intricacies of disease vulnerability by furnishing thorough understandings of metabolic changes linked to different metabolic diseases. This field offers exciting prospects for enhancing the disease prevention, early detection, and tailoring treatment approaches to individual needs. This article consolidates the existing knowledge on disease-linked metabolic pathways affected by the exposure of diverse heavy metals providing concise overview of the underlying impact mechanisms. The main aim is to investigate the connection between the altered metabolic pathways and long-term complex health conditions induced by heavy metals such as diabetes mellitus, cardiovascular diseases, renal disorders, inflammation, neurodegenerative diseases, reproductive risks, and organ damage. Further exploration of common pathways may unveil the shared targets for treating associated pathological conditions. In this article, the role of metabolomics in disease susceptibility is emphasized that metabolomics is expected to be routinely utilized for the diagnosis and monitoring of diseases and practical value of biomarkers derived from metabolomics, as well as determining their appropriate integration into extensive clinical settings.
Collapse
Affiliation(s)
- Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Pakistan
| |
Collapse
|
5
|
Wang N, Li C, Gao X, Huo Y, Li Y, Cheng F, Jiang F, Zhang Z. Co-exposure to lead and high-fat diet aggravates systemic inflammation in mice by altering gut microbiota and the LPS/TLR4 pathway. Metallomics 2024; 16:mfae022. [PMID: 38658185 DOI: 10.1093/mtomcs/mfae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
This study reports the toxicity of Pb exposure on systemic inflammation in high-fat-diet (HFD) mice and the potential mechanisms. Results indicated that Pb exacerbated intestinal barrier damage and increased serum levels of lipopolysaccharide (LPS) and diamine oxidase in HFD mice. Elevated LPS activates the colonic and ileal LPS-TLR4 inflammatory signaling pathway and further induces hepatic and adipose inflammatory expression. The 16S rRNA gene sequencing results showed that Pb promoted the abundance of potentially harmful and LPS-producing bacteria such as Coriobacteriaceae_UCG-002, Alloprevotella, and Oscillibacter in the intestines of HFD mice, and their abundance was positively correlated with LPS levels. Additionally, Pb inhibited the abundance of the beneficial bacteria Akkermansia, resulting in lower levels of the metabolite short-chain fatty acids (SCFAs). Meanwhile, Pb inhibited adenosine 5'-monophosphate-activated protein kinase signaling-mediated lipid metabolism pathways, promoting hepatic lipid accumulation. The above results suggest that Pb exacerbates systemic inflammation and lipid disorders in HFD mice by altering the gut microbiota, intestinal barrier, and the mediation of metabolites LPS and SCFAs. Our study provides potential novel mechanisms of human health related to Pb-induced metabolic damage and offers new evidence for a comprehensive assessment of Pb risk.
Collapse
Affiliation(s)
- Nana Wang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Changhao Li
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Xue Gao
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yuan Huo
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yuting Li
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Fangru Cheng
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Fei Jiang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Zengli Zhang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
6
|
Chen F, Zhu J, Yu L, Zhang Q, Guo M, Tian F, Zhai Q. Effect of Lactiplantibacillus plantarum CCFM8661 on serum metabolites and gut microbiota in a lead-exposed population. Int J Biol Macromol 2024; 261:129815. [PMID: 38296122 DOI: 10.1016/j.ijbiomac.2024.129815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
In this study, we investigated the impact of Lactiplantibacillus plantarum (L. plantarum) CCFM8661 on the gut microbiota, and the serum and fecal metabolomes in lead (Pb)-exposed individuals. The volunteers recruited for this study were divided into two treatment groups, (i) the placebo (control) and (ii) the L. plantarum CCFM8661 treatment groups. The analysis revealed that probiotic intervention reversed some of the changes in Pb exposure-induced intestinal bacterial abundance, including the abundance of Parabacteroides, Bacteroides, Clostridiaceae, and Erysipelotrichaceae. An analysis of the fecal metabolome identified 26 differential metabolites involved in purine metabolism, unsaturated fatty acid metabolism, and other pathways. Serum metabolite analysis showed that L. plantarum CCFM8661 treatment altered the serum metabolite levels of various metabolic pathways, such as the glycerophospholipid, amino acid, and glutathione metabolism pathways. These results suggest that L. plantarum CCFM8661 may have beneficial effects on Pb-exposed populations by modulating the gut microbiota, host serum metabolism, and the metabolism of the gut microbiota.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiamin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Akash MSH, Yaqoob A, Rehman K, Imran M, Assiri MA, Al-Rashed F, Al-Mulla F, Ahmad R, Sindhu S. Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities. Front Mol Biosci 2023; 10:1218497. [PMID: 37484533 PMCID: PMC10357477 DOI: 10.3389/fmolb.2023.1218497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Heavy metals are the metal compounds found in earth's crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs.
Collapse
Affiliation(s)
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
8
|
Alvi M, Rehman K, Akash MSH, Yaqoob A, Shoaib SM. Determination of Metabolomics Profiling in BPA-Induced Impaired Metabolism. Pharmaceutics 2022; 14:pharmaceutics14112496. [PMID: 36432690 PMCID: PMC9692868 DOI: 10.3390/pharmaceutics14112496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Exposure to bisphenol A (BPA) is unavoidable and it has far-reaching negative effects on living systems. This study aimed to explore the toxic effects of BPA in an experimental animal model through a metabolomics approach that is useful in measuring small molecule perturbations. Beside this, we also examined the ameliorative effects of resveratrol (RSV) against BPA-induced disturbances in experimental mice. This study was conducted for 28 days, and the results showed that BPA indeed induced an impairment in amino acid metabolism, taking place in the mitochondria by significantly (p < 0.05) decreasing the levels of certain amino acids, i.e., taurine, threonine, asparagine, leucine, norleucine, and glutamic acid in the mice plasma. However, the administration of RSV did prove effective against the BPA-induced intoxication and significantly (p < 0.05) restored the level of free amino acids. Lipid metabolites, L-carnitine, sphinganine, phytosphingosine, and lysophosphatidylcholine were also determined in the mice serum. A significant (p < 0.05) decline in glutathione peroxidase (GPx), superoxide dismutase (SOD,) glutathione, and catalase levels and an elevation in malondialdehyde level in the BPA group confirmed the generation of oxidative stress and lipid peroxidation in experimental mice exposed to BPA. The expression of Carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II (CPT-II), lecithin−cholesterol acyltransferase (LCAT), carnitine O-octanoyltransferase (CROT), carnitine-acylcarnitine translocase (CACT), and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) genes was significantly upregulated in the liver tissue homogenates of experimental mice exposed to BPA, although RSV regulated the expression of these genes when compared with BPA treated experimental mice. CPT-I, CPT-II, and CACT genes are located in the mitochondria and are involved in the metabolism and transportation of carnitine. Hence, this study confirms that BPA exposure induced oxidative stress, upregulated gene expression, and impaired lipid and amino acid metabolism in experimental mice.
Collapse
Affiliation(s)
- Maria Alvi
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 66000, Pakistan
| | - Muhammad Sajid Hamid Akash
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence:
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Syed Muhammad Shoaib
- Drugs Testing Laboratory, Faisalabad, Primary & Secondary Healthcare Department, Government of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|