1
|
Armeev GA, Moiseenko AV, Motorin NA, Afonin DA, Zhao L, Vasilev VA, Oleinikov PD, Glukhov GS, Peters GS, Studitsky VM, Feofanov AV, Shaytan AK, Shi X, Sokolova OS. Structure and dynamics of a nucleosome core particle based on Widom 603 DNA sequence. Structure 2025; 33:948-959.e5. [PMID: 40101710 DOI: 10.1016/j.str.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Nucleosomes are fundamental elements of chromatin organization that participate in compacting genomic DNA and serve as targets for the binding of numerous regulatory proteins. Currently, over 500 different nucleosome structures are known. Despite the large number of nucleosome structures, all of them were formed on only about twenty different DNA sequences. Using cryo-electron microscopy, we determined the structure of the nucleosome formed on a high-affinity Widom 603 DNA sequence at 4 Å resolution; an atomic model was built. We proposed an integrative modeling approach to study the nucleosomal DNA unwrapping based on the cryoelectron microscopy (cryo-EM) data. We also demonstrated the DNA unwrapping of the Widom 603 nucleosome using small angle X-ray scattering and single particle Förster resonance energy transfer measurements. Our results are consistent with the asymmetry of nucleosomal DNA unwrapping. Our data revealed the dependence of nucleosome structure and dynamics on the sequence of nucleosomal DNA.
Collapse
Affiliation(s)
- Grigoriy A Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Andrey V Moiseenko
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A Motorin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitriy A Afonin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lei Zhao
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Veniamin A Vasilev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel D Oleinikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Grigory S Glukhov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Georgy S Peters
- Faculty of Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily M Studitsky
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey V Feofanov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Xiangyan Shi
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Olga S Sokolova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
2
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Moos HK, Patel R, Flaherty SK, Loverde SM, Nikolova EN. H2A.Z facilitates Sox2-nucleosome interaction by promoting DNA and histone H3 tail mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641691. [PMID: 40093108 PMCID: PMC11908261 DOI: 10.1101/2025.03.06.641691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Epigenetic regulation of eukaryotic chromatin structure and function can be modulated by histone variants and post-translational modifications. The conserved variant H2A.Z has been functionally linked to pioneer factors Sox2 and Oct4 that open chromatin and initiate cell fate-specific expression programs. However, the molecular basis for their interaction remains unknown. Using biochemistry, nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations, we examine the role of H2A.Z nucleosome dynamics in pioneer factor binding. We find that H2A.Z facilitates Sox2 and Oct4 binding at distinct locations in 601 nucleosomes. We further link this to increased DNA accessibility and perturbed dynamics of the H3 N-terminal tail, which we show competes with Sox2 for DNA binding. Our simulations validate a coupling between H2A.Z-mediated DNA unwrapping and altered H3 N-tail conformations with fewer contacts to DNA and the H2A.Z C- terminal tail. This destabilizing effect of H2A.Z is DNA sequence dependent and enhanced with the less stable Lin28B nucleosome. Collectively, our findings suggest that H2A.Z promotes pioneer factor binding by increasing access to DNA and reducing competition with H3 tails. This could have broader implications for how epigenetic marks or oncogenic mutations tune pioneer factor engagement with chromatin and thus affect its structure and recognition.
Collapse
|
4
|
Alegrio-Louro J, Cruz-Becerra G, Kadonaga JT, Leschziner AE. Structural basis of nucleosome recognition by the conserved Dsup and HMGN nucleosome-binding motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631586. [PMID: 39829900 PMCID: PMC11741339 DOI: 10.1101/2025.01.06.631586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The tardigrade damage suppressor (Dsup) and vertebrate high mobility group N (HMGN) proteins bind specifically to nucleosomes via a conserved motif whose structure has not been experimentally determined. Here we used cryo-EM to show that both proteins bind to the nucleosome acidic patch via analogous arginine anchors with one molecule bound to each face of the nucleosome. We additionally employed the natural promoter-containing 5S rDNA sequence for structural analysis of the nucleosome. These structures of an ancient nucleosome-binding motif suggest that there is an untapped realm of proteins with a related mode of binding to chromatin.
Collapse
Affiliation(s)
- Jaime Alegrio-Louro
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally to this work
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally to this work
| | - James T. Kadonaga
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 PMCID: PMC11602356 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
6
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
7
|
Arita K. Cryo-electron microscopy reveals the impact of the nucleosome dynamics on transcription activity. J Biochem 2024; 175:383-385. [PMID: 38215727 DOI: 10.1093/jb/mvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024] Open
Abstract
The structural biology of nucleosomes and their complexes with chromatin-associated factors contributes to our understanding of fundamental biological processes in the genome. With the advent of cryo-electron microscopy (cryo-EM), several structures are emerging with histone variants, various species and chromatin-associated proteins that bind to nucleosomes. Cryo-EM enables visualization of the dynamic states of nucleosomes, leading to the accumulation of knowledge on chromatin-templated biology. The cryo-EM structure of nucleosome in Komagataella pastoris, as studied by Fukushima et al., provided the insights into transcription ability of RNAPII with nucleosome dynamics. In this commentary, we review the recent advances in the structural biology of nucleosomes and their related biomolecules.
Collapse
Affiliation(s)
- Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|