1
|
Singh S, Srivastava KS, Gahtori P, Anand AA, Samanta SK, Kumawat MK, Bhat HR, Corona A, Tramontano E, Mitra D, Singh UP. Design, and synthesis of 2,4-thiazolidinedione substituted 1,3,5-triazine derivatives as anti-HIV agent via inhibition of reverse transcriptase along with anti-SARS CoV-2, antibacterial and antibiofilm activity. Bioorg Chem 2025; 160:108427. [PMID: 40187029 DOI: 10.1016/j.bioorg.2025.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/23/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The present study demonstrated the design and synthesis of novel 1,2,4-thiazolidinedione substituted 1,3,5-triazine derivatives as putative inhibitors against various infective diseases. The title analogues were synthesized in a multi-step process, and their structures were verified through elemental analysis and a variety of spectral analyses (FT-IR, 1H NMR, 13C NMR, mass). Compounds 12a was identified as prospective lead compound against HIV-1 based on their high CDdocker interaction energy and stability among the developed derivatives, according to molecular docking and MD simulation experiments with HIV-1 RT. Compound 12a was found effective against HIV-1 in a cell-based experiment, preventing the virus from replicating in CEM-GFP cells infected with 0.5 MOI of HIV-1 NL4-1. In the RNA-dependent DNA polymerase (RDDP) activity of the HIV-1 RT enzyme using a cell free based RT assay, compound 12a showed a therapeutic index of 113 and an EC50 of 125.1 nM. All of the compounds inhibited SARS-CoV-2 replication in the VeroE6-GFP cell line to varying degrees; compound 10e, 12e, 12a, 12b, and 12c, in particular, showed considerable inhibitory activity. The compounds exhibited stronger antibacterial action against Gram-negative than Gram-positive bacteria in an antimicrobial assay, and a SAR analysis revealed that tri-substituted 1,3,5-triazine derivatives exhibited greater inhibitory activity than di-substituted ones. Additionally, 12d and 12e were found to be the most effective inhibitors of P. aeruginosa biofilms when tested against this bacterium. The most active inhibitors, 12a and 12e, were also tested for thermodynamic solubility at pH 7.4 via miniaturized shake-flask method. Here, their solubility was found to be significantly influenced by the presence of hydroxyl group and morpholine. In conclusion, our research demonstrated the significant inhibitory activity of 1,2,4-thiazolidinedione substituted 1,3,5-triazine derivatives against HIV, SARS-CoV-2, and bacterial microorganisms.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | | | - Prashant Gahtori
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad (IIITA), Prayagraj, Uttar Pradesh 211015, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad (IIITA), Prayagraj, Uttar Pradesh 211015, India
| | - Mukesh Kumar Kumawat
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Angela Corona
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy
| | - Enzo Tramontano
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra 411007, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007, India.
| |
Collapse
|
2
|
Roy D, Manumol M, Alagarasu K, Parashar D, Cherian S. Phytochemicals of Different Medicinal Herbs as Potential Inhibitors Against Dengue Serotype 2 Virus: A Computational Approach. Mol Biotechnol 2024:10.1007/s12033-024-01282-8. [PMID: 39264526 DOI: 10.1007/s12033-024-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Dengue is one of the major mosquito-borne infectious diseases of the present century, reported to affect about 100-400 million people globally. The lack of effective therapeutic options has inspired several in vitro and in silico studies for the search of antivirals. Our previous study revealed the anti-dengue activity of different plant extracts from Plumeria alba, Bacopa monnieri, Vitex negundo, and Ancistrocladus heyneanus. Therefore, the current in silico study was designed to identify the phytochemicals present in the aforementioned plants, which are possibly responsible for the anti-dengue activity. Different plant databases as well as relevant literature were explored to find out the major compounds present in the above-stated plants followed by screening of the retrieved phytochemicals for the assessment of their binding affinity against different dengue viral proteins via molecular docking. The best poses of protein-ligand complexes obtained after molecular docking were selected for the calculation of binding free energy via MM-GBSA method. Based on the highest docking score and binding energy, six complexes were considered for further analysis. To analyze the stability of the complex, 100 ns molecular dynamics (MD) simulations were carried out using Desmond module in the Schrodinger suite. The MD simulation analysis showed that four compounds viz. liriodendrin, bacopaside VII, isoorientin, and cynaroside exhibited stability with viral targets including the RdRp, NS3 helicase, and E protein indicating their potential as novel anti-dengue antivirals.
Collapse
Affiliation(s)
- Diya Roy
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - M Manumol
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India.
| |
Collapse
|
3
|
Ghafoor NA, Kırboğa KK, Baysal Ö, Süzek BE, Silme RS. Data mining and molecular dynamics analysis to detect HIV-1 reverse transcriptase RNase H activity inhibitor. Mol Divers 2024; 28:1869-1888. [PMID: 37561229 DOI: 10.1007/s11030-023-10707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
HIV-1 is a deadly virus that affects millions of people worldwide. In this study, we aimed to inhibit viral replication by targeting one of the HIV-1 proteins and identifying a new drug candidate. We used data mining and molecular dynamics methods on HIV-1 genomes. Based on MAUVE analysis, we selected the RNase H activity of the reverse transcriptase (R.T) enzyme as a potential target due to its low mutation rate and high conservation level. We screened about 94,000 small molecule inhibitors by virtual screening. We validated the hit compounds' stability and binding free energy through molecular dynamics simulations and MM/PBSA. Phomoarcherin B, known for its anticancer properties, emerged as the best candidate and showed potential as an HIV-1 reverse transcriptase RNase H activity inhibitor. This study presents a new target and drug candidate for HIV-1 treatment. However, in vitro and in vivo tests are required. Also, the effect of RNase H activity on viral replication and the interaction of Phomoarcherin B with other HIV-1 proteins should be investigated.
Collapse
Affiliation(s)
- Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, 48121, Muğla, Turkey
| | - Kevser Kübra Kırboğa
- Bioengineering Department, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey
- Informatics Institute, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ömür Baysal
- Molecular Microbiology Unit, Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, 48121, Muğla, Turkey.
| | - Barış Ethem Süzek
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Kötekli, 48000, Muğla, Turkey
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Vezneciler, Fatih, 34119, Istanbul, Turkey
| |
Collapse
|
4
|
Xie M, Wang Z, Zhao F, Li Y, Zhuo Z, Li X, De Clercq E, Pannecouque C, Zhan P, Liu X, Kang D. Structure-based design of diarylpyrimidines and triarylpyrimidines as potent HIV-1 NNRTIs with improved metabolic stability and drug resistance profiles. J Med Virol 2024; 96:e29502. [PMID: 38450817 DOI: 10.1002/jmv.29502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 μM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 μM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.
Collapse
Affiliation(s)
- Minghui Xie
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ye Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongji Zhuo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Leuven, Belgium
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
5
|
Prucha GR, Henry S, Hollander K, Carter ZJ, Spasov KA, Jorgensen WL, Anderson KS. Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase. Eur J Med Chem 2023; 262:115894. [PMID: 37883896 PMCID: PMC10872499 DOI: 10.1016/j.ejmech.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Reverse transcriptase (RT) is one of three key proteins responsible for the replication cycle of HIV-1 in the host. Several classes of inhibitors have been developed to target the enzyme, with non-nucleoside reverse transcriptase inhibitors forming first-line treatment. Previously, covalent RT inhibitors have been identified and found to bind irreversibly to commonly mutated residues such as Y181C. In this work we aim to circumvent the issue of NNRTI resistance through targeting K102, which has not yet been identified to confer drug resistance. As reported here, 34 compounds were synthesized and characterized biochemically and structurally with wild-type (WT) HIV-1 RT. Two of these inhibitors demonstrate covalent inhibition as evidenced by protein crystallography, enzyme kinetics, mass spectrometry, and antiviral potency in HIV-1 infected human T-cell assays.
Collapse
Affiliation(s)
- Giavana R Prucha
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520-8066, USA
| | - Sean Henry
- Department of Chemistry, Yale University, New Haven, CT, 06520-8107, USA
| | - Klarissa Hollander
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06520-8066, USA
| | - Zachary J Carter
- Department of Chemistry, Yale University, New Haven, CT, 06520-8107, USA
| | - Krasimir A Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520-8066, USA
| | | | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06520-8066, USA.
| |
Collapse
|
6
|
Stachowicz-Kuśnierz A, Korchowiec B, Korchowiec J. Nucleoside Analog Reverse-Transcriptase Inhibitors in Membrane Environment: Molecular Dynamics Simulations. Molecules 2023; 28:6273. [PMID: 37687102 PMCID: PMC10488468 DOI: 10.3390/molecules28176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The behavior of four drugs from the family of nucleoside analog reverse-transcriptase inhibitors (zalcitabine, stavudine, didanosine, and apricitabine) in a membrane environment was traced using molecular dynamics simulations. The simulation models included bilayers and monolayers composed of POPC and POPG phospholipids. It was demonstrated that the drugs have a higher affinity towards POPG membranes than POPC membranes due to attractive long-range electrostatic interactions. The results obtained for monolayers were consistent with those obtained for bilayers. The drugs accumulated in the phospholipid polar headgroup region. Two adsorption modes were distinguished. They differed in the degree of penetration of the hydrophilic headgroup region. Hydrogen bonds between drug molecules and phospholipid heads were responsible for adsorption. It was shown that apricitabine penetrated the hydrophilic part of the POPC and POPG membranes more effectively than the other drugs. Van der Waals interactions between S atoms and lipids were responsible for this.
Collapse
Affiliation(s)
| | | | - Jacek Korchowiec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.S.-K.); (B.K.)
| |
Collapse
|
7
|
Corona A, Meleddu R, Delelis O, Subra F, Cottiglia F, Esposito F, Distinto S, Maccioni E, Tramontano E. 5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action. Front Cell Infect Microbiol 2023; 13:1193280. [PMID: 37424782 PMCID: PMC10328743 DOI: 10.3389/fcimb.2023.1193280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Olivier Delelis
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Frederic Subra
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
8
|
Zhao F, Zhang H, Xie M, Meng B, Liu N, Dun C, Qin Y, Gao S, De Clercq E, Pannecouque C, Tang YJ, Zhan P, Liu X, Kang D. Structure-Based Optimization of 2,4,5-Trisubstituted Pyrimidines as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Exploiting the Tolerant Regions of the Non-Nucleoside Reverse Transcriptase Inhibitors' Binding Pocket. J Med Chem 2023; 66:2102-2115. [PMID: 36700940 DOI: 10.1021/acs.jmedchem.2c01875] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although non-nucleoside reverse transcriptase inhibitors (NNRTIs) exhibit potent anti-HIV-1 activity and play an important role in the active antiretroviral therapy of AIDS, the emergence of drug-resistant strains has seriously reduced their clinical efficacy. Here, we report a series of 2,4,5-trisubstituted pyrimidines as potent HIV-1 NNRTIs by exploiting the tolerant regions of the NNRTI binding pocket. Compounds 16b and 16c were demonstrated to have excellent activity (EC50 = 3.14-22.1 nM) against wild-type and a panel of mutant HIV-1 strains, being much superior to that of etravirine (EC50 = 3.53-52.2 nM). Molecular modeling studies were performed to illustrate the detailed interactions between RT and 16b, which shed light on the improvement of the drug resistance profiles. Moreover, 16b possessed favorable pharmacokinetic (T1/2 = 1.33 h, F = 31.8%) and safety profiles (LD50 > 2000 mg/kg), making it a promising anti-HIV-1 drug candidate for further development.
Collapse
Affiliation(s)
- Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Na Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Caiyun Dun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Yanyang Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012 Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012 Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012 Shandong, PR China
| |
Collapse
|
9
|
Pata JD, Yin YW, Lahiri I. Editorial: Nucleic Acid Polymerases: The Two-Metal-Ion Mechanism and Beyond. Front Mol Biosci 2022; 9:948326. [PMID: 35911968 PMCID: PMC9332193 DOI: 10.3389/fmolb.2022.948326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Janice D. Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
- *Correspondence: Janice D. Pata,
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|