1
|
Nijjar S, Brotherton D, Butler J, Dospinescu V, Gannon HG, Linthwaite V, Cann M, Cameron A, Dale N. Multiple carbamylation events are required for differential modulation of Cx26 hemichannels and gap junctions by CO 2. J Physiol 2025; 603:1071-1089. [PMID: 39907096 PMCID: PMC11870076 DOI: 10.1113/jp285885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
CO2 directly modifies the gating of connexin26 (Cx26) gap junction channels and hemichannels. This gating depends upon Lys125, and the proposed mechanism involves carbamylation of Lys125 to allow formation of a salt bridge with Arg104 on the neighbouring subunit. We demonstrate via carbamate trapping and tandem mass spectrometry that five Lys residues within the cytoplasmic loop, including Lys125, are indeed carbamylated by CO2. The cytoplasmic loop appears to provide a chemical microenvironment that facilitates carbamylation. Systematic mutation of these Lys residues to Arg shows that only carbamylation of Lys125 is essential for hemichannel opening. By contrast, carbamylation of Lys108 and Lys125 is essential for gap junction closure to CO2. Chicken (Gallus gallus) Cx26 gap junction channels lack Lys108 and do not close to CO2, as shown by both a dye transfer assay and a high-resolution cryogenic electron microscopy structure. The mutation Lys108Arg prevents CO2-dependent gap junction channel closure in human Cx26. Our findings directly demonstrate carbamylation in connexins, provide further insight into the differential action of CO2 on Cx26 hemichannels and gap junction channels, and increase support for the role of the N-terminus in gating the Cx26 channel. KEY POINTS: Direct evidence of carbamylation of multiple lysine residues in the cytoplasmic loop of Cx26. Concentration-dependent carbamylation at lysines 108, 122 and 125. Only carbamylation of lysine 125 is essential for hemichannel opening to CO2. Carbamylation of lysine 108 along with lysine 125 is essential for CO2-dependent gap junction channel closure.
Collapse
Affiliation(s)
| | | | - Jack Butler
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | | | - Martin Cann
- Department of BiosciencesDurham UniversityDurhamUK
| | | | - Nicholas Dale
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
2
|
Xu G, Torri D, Cuesta-Hoyos S, Panda D, Yates LRL, Zallot R, Bian K, Jia D, Iorgu AI, Levy C, Shepherd SA, Micklefield J. Cryptic enzymatic assembly of peptides armed with β-lactone warheads. Nat Chem Biol 2024; 20:1371-1379. [PMID: 38951647 PMCID: PMC11427300 DOI: 10.1038/s41589-024-01657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Nature has evolved biosynthetic pathways to molecules possessing reactive warheads that inspired the development of many therapeutic agents, including penicillin antibiotics. Peptides armed with electrophilic warheads have proven to be particularly effective covalent inhibitors, providing essential antimicrobial, antiviral and anticancer agents. Here we provide a full characterization of the pathways that nature deploys to assemble peptides with β-lactone warheads, which are potent proteasome inhibitors with promising anticancer activity. Warhead assembly involves a three-step cryptic methylation sequence, which is likely required to reduce unfavorable electrostatic interactions during the sterically demanding β-lactonization. Amide-bond synthetase and adenosine triphosphate (ATP)-grasp enzymes couple amino acids to the β-lactone warhead, generating the bioactive peptide products. After reconstituting the entire pathway to β-lactone peptides in vitro, we go on to deliver a diverse range of analogs through enzymatic cascade reactions. Our approach is more efficient and cleaner than the synthetic methods currently used to produce clinically important warhead-containing peptides.
Collapse
Affiliation(s)
- Guangcai Xu
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Daniele Torri
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Sebastian Cuesta-Hoyos
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Deepanjan Panda
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Luke R L Yates
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Rémi Zallot
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Kehan Bian
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Dongxu Jia
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Andreea I Iorgu
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Colin Levy
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Sarah A Shepherd
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Gannon HG, Riaz-Bradley A, Cann MJ. A Non-Functional Carbon Dioxide-Mediated Post-Translational Modification on Nucleoside Diphosphate Kinase of Arabidopsis thaliana. Int J Mol Sci 2024; 25:898. [PMID: 38255974 PMCID: PMC10815852 DOI: 10.3390/ijms25020898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The carbamate post-translational modification (PTM), formed by the nucleophilic attack of carbon dioxide by a dissociated lysine epsilon-amino group, is proposed as a widespread mechanism for sensing this biologically important bioactive gas. Here, we demonstrate the discovery and in vitro characterization of a carbamate PTM on K9 of Arabidopsis nucleoside diphosphate kinase (AtNDK1). We demonstrate that altered side chain reactivity at K9 is deleterious for AtNDK1 structure and catalytic function, but that CO2 does not impact catalysis. We show that nucleotide substrate removes CO2 from AtNDK1, and the carbamate PTM is functionless within the detection limits of our experiments. The AtNDK1 K9 PTM is the first demonstration of a functionless carbamate. In light of this finding, we speculate that non-functionality is a possible feature of the many newly identified carbamate PTMs.
Collapse
Affiliation(s)
- Harry G. Gannon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (H.G.G.)
| | - Amber Riaz-Bradley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (H.G.G.)
| | - Martin J. Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (H.G.G.)
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
4
|
Ohde D, Thomas B, Bubenheim P, Liese A. Enzymatic Carboxylation of Resorcinol in Aqueous Triethanolamine at Elevated CO 2 Pressure. Molecules 2023; 29:25. [PMID: 38202608 PMCID: PMC10779730 DOI: 10.3390/molecules29010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The fixation of CO2 by enzymatic carboxylation for production of valuable carboxylic acids is one way to recycle carbon. Unfortunately, this type of reaction is limited by an unfavourable thermodynamic equilibrium. An excess of the C1 substrate is required to increase conversions. Solvents with a high CO2 solubility, such as amines, can provide the C1 substrate in excess. Here, we report on the effect of CO2 pressures up to 1100 kPa on the enzymatic carboxylation of resorcinol in aqueous triethanolamine. Equilibrium yields correlate to the bicarbonate concentration. However, inhibition is observed at elevated pressure, severely reducing the enzyme activity. The reaction yields were reduced at higher pressures, whereas at ambient pressure, higher yields were achieved. Overall, CO2 pressures above 100 kPa have been demonstrated to be counterproductive for improving the biotransformation, as productivity decreases rapidly for only a modest improvement in conversion. It is expected that CO2 carbamylation intensifies at elevated CO2 pressures, causing the inhibition of the enzyme. To further increase the reaction yield, the in situ product precipitation is tested by the addition of the quaternary ammonium salt tetrabutylammonium bromide.
Collapse
Affiliation(s)
- Daniel Ohde
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany; (B.T.); (P.B.)
| | | | | | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany; (B.T.); (P.B.)
| |
Collapse
|
5
|
Fenton NM, Brown AJ. A tale of 2 gasses, 1 regulator, and cholesterol homeostasis. PLoS Biol 2023; 21:e3002401. [PMID: 37992072 PMCID: PMC10664885 DOI: 10.1371/journal.pbio.3002401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
There is a burgeoning appreciation for the wide-ranging effects of carbon dioxide on transcriptional regulation and metabolism. Here, Bolshette and colleagues provide the first link between carbon dioxide and the master transcriptional regulator of cholesterol homeostasis.
Collapse
Affiliation(s)
- Nicole M. Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Andrew J. Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| |
Collapse
|
6
|
Winterbourn CC, Peskin AV, Kleffmann T, Radi R, Pace PE. Carbon dioxide/bicarbonate is required for sensitive inactivation of mammalian glyceraldehyde-3-phosphate dehydrogenase by hydrogen peroxide. Proc Natl Acad Sci U S A 2023; 120:e2221047120. [PMID: 37098065 PMCID: PMC10161126 DOI: 10.1073/pnas.2221047120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 04/26/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contains an active site Cys and is one of the most sensitive cellular enzymes to oxidative inactivation and redox regulation. Here, we show that inactivation by hydrogen peroxide is strongly enhanced in the presence of carbon dioxide/bicarbonate. Inactivation of isolated mammalian GAPDH by H2O2 increased with increasing bicarbonate concentration and was sevenfold faster in 25 mM (physiological) bicarbonate compared with bicarbonate-free buffer of the same pH. H2O2 reacts reversibly with CO2 to form a more reactive oxidant, peroxymonocarbonate (HCO4-), which is most likely responsible for the enhanced inactivation. However, to account for the extent of enhancement, we propose that GAPDH must facilitate formation and/or targeting of HCO4- to promote its own inactivation. Inactivation of intracellular GAPDH was also strongly enhanced by bicarbonate: treatment of Jurkat cells with 20 µM H2O2 in 25 mM bicarbonate buffer for 5 min caused almost complete GAPDH inactivation, but no loss of activity when bicarbonate was not present. H2O2-dependent GAPDH inhibition in bicarbonate buffer was observed even in the presence of reduced peroxiredoxin 2 and there was a significant increase in cellular glyceraldehyde-3-phosphate/dihydroxyacetone phosphate. Our results identify an unrecognized role for bicarbonate in enabling H2O2 to influence inactivation of GAPDH and potentially reroute glucose metabolism from glycolysis to the pentose phosphate pathway and NAPDH production. They also demonstrate what could be wider interplay between CO2 and H2O2 in redox biology and the potential for variations in CO2 metabolism to influence oxidative responses and redox signaling.
Collapse
Affiliation(s)
- Christine C. Winterbourn
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch8014, New Zealand
| | - Alexander V. Peskin
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch8014, New Zealand
| | - Torsten Kleffmann
- Research Infrastructure Centre, University of Otago, Dunedin9016, New Zealand
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800Montevideo, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, 11800Montevideo, Uruguay
| | - Paul E. Pace
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch8014, New Zealand
| |
Collapse
|
7
|
Pinheiro Y, Faria da Mota F, Peixoto RS, van Elsas JD, Lins U, Mazza Rodrigues JL, Rosado AS. A thermophilic chemolithoautotrophic bacterial consortium suggests a mutual relationship between bacteria in extreme oligotrophic environments. Commun Biol 2023; 6:230. [PMID: 36859706 PMCID: PMC9977764 DOI: 10.1038/s42003-023-04617-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
A thermophilic, chemolithoautotrophic, and aerobic microbial consortium (termed carbonitroflex) growing in a nutrient-poor medium and an atmosphere containing N2, O2, CO2, and CO is investigated as a model to expand our understanding of extreme biological systems. Here we show that the consortium is dominated by Carbonactinospora thermoautotrophica (strain StC), followed by Sphaerobacter thermophilus, Chelatococcus spp., and Geobacillus spp. Metagenomic analysis of the consortium reveals a mutual relationship among bacteria, with C. thermoautotrophica StC exhibiting carboxydotrophy and carbon-dioxide storage capacity. C. thermoautotrophica StC, Chelatococcus spp., and S. thermophilus harbor genes encoding CO dehydrogenase and formate oxidase. No pure cultures were obtained under the original growth conditions, indicating that a tightly regulated interactive metabolism might be required for group survival and growth in this extreme oligotrophic system. The breadwinner hypothesis is proposed to explain the metabolic flux model and highlight the vital role of C. thermoautotrophica StC (the sole keystone species and primary carbon producer) in the survival of all consortium members. Our data may contribute to the investigation of complex interactions in extreme environments, exemplifying the interconnections and dependency within microbial communities.
Collapse
Affiliation(s)
- Yuri Pinheiro
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Faria da Mota
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Ulysses Lins
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California Davis, Davis, CA, USA
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
8
|
Radaelli A, Ortiz D, Michelotti A, Roche M, Hata R, Sando S, Bonny O, Gruetter R, Yoshihara HAI. Hyperpolarized (1- 13C)Alaninamide Is a Multifunctional In Vivo Sensor of Aminopeptidase N Activity, pH, and CO 2. ACS Sens 2022; 7:2987-2994. [PMID: 36194687 DOI: 10.1021/acssensors.2c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-13C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been described. Scanning the kidneys of rats infused with hyperpolarized alaninamide shows both conversion to [1-13C]alanine and several additional spectral peaks with distinct temporal dynamics. The (1-13C)alaninamide chemical shift is pH-sensitive, with a pKa of 7.9 at 37 °C, and the peaks correspond to at least three different compartments of pH 7.46 ± 0.02 (1), 7.21 ± 0.02 (2), and 6.58 ± 0.05 (3). An additional peak was assigned to the carboxyamino adduct formed by reaction with dissolved CO2. Spectroscopic imaging showed nonuniform distribution, with the low-pH signal more concentrated in the inner medulla. Treatment with the diuretic acetazolamide resulted in significant pH shifts in compartment 1 to 7.38 ± 0.03 (p = 0.0057) and compartment 3 to 6.80 ± 0.05 (p = 0.0019). While the pH of compartment 1 correlates with blood pH, the pH of compartment 3 did not correspond to the pH of urine. In vitro experiments show that alaninamide readily enters blood cells and can detect intracellular pH. While carbamate formation depends on pH and pCO2, the carbamate-to-alaninamide ratio did not correlate with either arterial blood pH or pCO2, suggesting that it may reflect variations in tissue pH and pCO2. This study demonstrates the feasibility of using hyperpolarized sensors to simultaneously image enzyme activity, pCO2, and pH in vivo.
Collapse
Affiliation(s)
- Alice Radaelli
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, EPFL, 1015Lausanne, Switzerland
| | - Daniel Ortiz
- Mass Spectrometry Platform, Institute of Chemical Sciences and Engineering (ISIC), EPFL, 1015Lausanne, Switzerland
| | | | - Maxime Roche
- CortecNet, 7 Avenue du Hoggar, 91940Les Ulis, France
| | - Ryunosuke Hata
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo113-8656, Japan
| | - Olivier Bonny
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), 1011Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, EPFL, 1015Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, EPFL, 1015Lausanne, Switzerland
| |
Collapse
|
9
|
Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022; 298:102358. [PMID: 35961463 PMCID: PMC9485056 DOI: 10.1016/j.jbc.2022.102358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
Abstract
The carbon dioxide/bicarbonate (CO2/HCO3-) molecular pair is ubiquitous in mammalian cells and tissues, mainly as a result of oxidative decarboxylation reactions that occur during intermediary metabolism. CO2 is in rapid equilibrium with HCO3-via the hydration reaction catalyzed by carbonic anhydrases. Far from being an inert compound in redox biology, CO2 enhances or redirects the reactivity of peroxides, modulating the velocity, extent, and type of one- and two-electron oxidation reactions mediated by hydrogen peroxide (H2O2) and peroxynitrite (ONOO-/ONOOH). Herein, we review the biochemical mechanisms by which CO2 engages in peroxide-dependent reactions, free radical production, redox signaling, and oxidative damage. First, we cover the metabolic formation of CO2 and its connection to peroxide formation and decomposition. Next, the reaction mechanisms, kinetics, and processes by which the CO2/peroxide interplay modulates mammalian cell redox biology are scrutinized in-depth. Importantly, CO2 also regulates gene expression related to redox and nitric oxide metabolism and as such influences oxidative and inflammatory processes. Accumulated biochemical evidence in vitro, in cellula, and in vivo unambiguously show that the CO2 and peroxide metabolic pathways are intertwined and together participate in key redox events in mammalian cells.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
10
|
Dotsenko OI. The whole-cell kinetic metabolic model of the pH regulation mechanisms in human erythrocytes. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mathematical modeling in recent years helped to obtain answers to questions that were difficult or even impossible to answer experimentally, to predict several unexpected connections in cell metabolism and to understand and importance of certain biochemical reactions. Due to the complexity and variety of processes underlying the mechanisms of intracellular pH (pHi) regulation, mathematical modeling and metabolome analysis are powerful tools for their analysis. In this regard, a mathematical metabolic model for human erythrocytes was created, which combines cellular metabolism with acid-base processes and gas exchange. The model consists of the main metabolic pathways, such as glycolysis, the pentose phosphate pathway, some membrane transport systems, and interactions between hemoglobin and metabolites. The Jacobs-Stewart cycle, which is fundamental in gas exchange and pH regulation, was included to these pathways. The model was created in the COPASI environment, consisted of 85 reactions, the rate of which is based on accurate kinetic equations. The time dependences of reaction flows and metabolite concentrations, as an outcome of calculations, allowed us to reproduce the behaviour of the metabolic system after its disturbance in vitro and to establish the recovery mechanisms or approximation to stationary states. The COPASI simulation environment provides model flexibility by reproducing any experimental design by optimizing direct quantitative comparisons between measured and predicted results. Thus, the procedure of parameters optimization (Parameter Estimation) followed by the solution of the model’s differential equations (Time Course procedure) was used to predict the behaviour of all measured and unmeasured variables over time. The initial intracellular concentrations of CO2, HCO3– in human erythrocytes used for incubation in a phosphate buffer medium were calculated. Changes in CO2, HCO3– content over time were shown. It was established that the regulation of pH in erythrocytes placed in a buffer medium takes place with the participation of two types of processes – fast (takes place in 1.3 s) and slow. It is shown that fast processes are aimed at restoring the intracellular balance between CO2 and HCO3–, slow processes are aimed at establishing the balance of H+ between the cell and the extracellular environment. The role of carbonic anhydrase (CA) and hemoglobin in the processes of pH stabilization is shown and analyzed. The physiological role of the metabolon between band 3 protein (AE1), CA, aquaporin and hemoglobin in maintaining pH homeostasis in the conditions of in vitro experiments are discussed.
Collapse
|