1
|
Ahmed WS, Geethakumari AM, Sultana A, Tiwari A, Altamash T, Arshad N, Visweswariah SS, Biswas KH. Coevolving residues distant from the ligand binding site are involved in GAF domain function. Commun Chem 2025; 8:107. [PMID: 40195517 PMCID: PMC11977230 DOI: 10.1038/s42004-025-01447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 04/09/2025] Open
Abstract
Ligand binding to GAF domains regulates the activity of associated catalytic domains in various proteins, such as the cGMP-hydrolyzing catalytic domain of phosphodiesterase 5 (PDE5) activated by cGMP binding to GAFa domain. However, the specific residues involved and the mechanism of GAF domain function remain unclear. Here, we combine computational and experimental approaches to demonstrate that two highly coevolving residues, L267 and F295, distant from the ligand binding site, play a critical role in GAF domain allostery. Statistical Coupling Analysis (SCA) of GAF domain sequences identified these residues, and molecular dynamics (MD) simulations of both apo and holo forms of wild-type and mutant (L267A, F295A) PDE5 GAFa domains revealed significant changes in structural dynamics and cGMP interaction. Mutational incorporation into a Bioluminescence Resonance Energy Transfer (BRET)-based biosensors, which detects ligand-induced conformational changes, showed altered GAF domain conformation and increased EC50 for cGMP-induced conformational changes. Similar effects were observed in full-length PDE5 and the GAF domain fluorescent protein, miRFP670nano3. Structural analysis of conformers observed in MD simulations suggested a mechanism by which these coevolving residues influence GAF domain allostery. Our findings provide insight into the role of distant residues in GAF domain function and may enhance understanding of allostery in proteins.
Collapse
Affiliation(s)
- Wesam S Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Asfia Sultana
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Anmol Tiwari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Tausif Altamash
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Arshad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, US
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL, US
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Kabir H Biswas
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Fatima A, Geethakumari AM, Ahmed WS, Biswas KH. A potential allosteric inhibitor of SARS-CoV-2 main protease (M pro) identified through metastable state analysis. Front Mol Biosci 2024; 11:1451280. [PMID: 39310374 PMCID: PMC11413593 DOI: 10.3389/fmolb.2024.1451280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Anti-COVID19 drugs, such as nirmatrelvir, have been developed targeting the SARS-CoV-2 main protease, Mpro, based on the critical requirement of its proteolytic processing of the viral polyproteins into functional proteins essential for viral replication. However, the emergence of SARS-CoV-2 variants with Mpro mutations has raised the possibility of developing resistance against these drugs, likely due to therapeutic targeting of the Mpro catalytic site. An alternative to these drugs is the development of drugs that target an allosteric site distant from the catalytic site in the protein that may reduce the chance of the emergence of resistant mutants. Here, we combine computational analysis with in vitro assay and report the discovery of a potential allosteric site and an allosteric inhibitor of SARS-CoV-2 Mpro. Specifically, we identified an Mpro metastable state with a deformed catalytic site harboring potential allosteric sites, raising the possibility that stabilization of this metastable state through ligand binding can lead to the inhibition of Mpro activity. We then performed a computational screening of a library (∼4.2 million) of drug-like compounds from the ZINC database and identified several candidate molecules with high predicted binding affinity. MD simulations showed stable binding of the three top-ranking compounds to the putative allosteric sites in the protein. Finally, we tested the three compounds in vitro using a BRET-based Mpro biosensor and found that one of the compounds (ZINC4497834) inhibited the Mpro activity. We envisage that the identification of a potential allosteric inhibitor of Mpro will aid in developing improved anti-COVID-19 therapy.
Collapse
|
3
|
Sultana A, Geethakumari AM, Islam Z, Kolatkar PR, Biswas KH. BRET-based biosensors for SARS-CoV-2 oligonucleotide detection. Front Bioeng Biotechnol 2024; 12:1353479. [PMID: 38887615 PMCID: PMC11181354 DOI: 10.3389/fbioe.2024.1353479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The need for the early detection of emerging pathogenic viruses and their newer variants has driven the urgent demand for developing point-of-care diagnostic tools. Although nucleic acid-based methods such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and loop-mediated isothermal amplification (LAMP) have been developed, a more facile and robust platform is still required. To address this need, as a proof-of-principle study, we engineered a prototype-the versatile, sensitive, rapid, and cost-effective bioluminescence resonance energy transfer (BRET)-based biosensor for oligonucleotide detection (BioOD). Specifically, we designed BioODs against the SARS-CoV-2 parental (Wuhan strain) and B.1.617.2 Delta variant through the conjugation of specific, fluorescently modified molecular beacons (sensor module) through a complementary oligonucleotide handle DNA functionalized with the NanoLuc (NLuc) luciferase protein such that the dissolution of the molecular beacon loop upon the binding of the viral oligonucleotide will result in a decrease in BRET efficiency and, thus, a change in the bioluminescence spectra. Following the assembly of the BioODs, we determined their kinetics response, affinity for variant-specific oligonucleotides, and specificity, and found them to be rapid and highly specific. Furthermore, the decrease in BRET efficiency of the BioODs in the presence of viral oligonucleotides can be detected as a change in color in cell phone camera images. We envisage that the BioODs developed here will find application in detecting viral infections with variant specificity in a point-of-care-testing format, thus aiding in large-scale viral infection surveillance.
Collapse
Affiliation(s)
- Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Mohammed I, Selvaraj S, Ahmed WS, Al-Barazenji T, Hammad AS, Dauleh H, Saraiva LR, Al-Shafai M, Hussain K. Functional Characterization of Novel MC4R Variants Identified in Two Unrelated Patients with Morbid Obesity in Qatar. Int J Mol Sci 2023; 24:16361. [PMID: 38003551 PMCID: PMC10671262 DOI: 10.3390/ijms242216361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The leptin-melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin-melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity.
Collapse
Affiliation(s)
- Idris Mohammed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (I.M.); (W.S.A.); (L.R.S.)
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Senthil Selvaraj
- Department of Disease Modeling and Therapeutics, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Wesam S. Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (I.M.); (W.S.A.); (L.R.S.)
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (T.A.-B.); (A.S.H.)
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (T.A.-B.); (A.S.H.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hajar Dauleh
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Luis R. Saraiva
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (I.M.); (W.S.A.); (L.R.S.)
- Department of Disease Modeling and Therapeutics, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (T.A.-B.); (A.S.H.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| |
Collapse
|
5
|
Vergara NG, Gatchel M, Abrams CF. Entropic Overcompensation of the N501Y Mutation on SARS-CoV-2 S Binding to ACE2. J Chem Inf Model 2023; 63:633-642. [PMID: 36584335 PMCID: PMC9843633 DOI: 10.1021/acs.jcim.2c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/31/2022]
Abstract
Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al. J. Biol. Chem.2021, 297, 101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on the enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Furthermore, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intraprotein root mean square fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the inter-residue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result in increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.
Collapse
Affiliation(s)
- Natasha Gupta Vergara
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Megan Gatchel
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Peña Rodríguez M, Hernández Bello J, Vega Magaña N, Viera Segura O, García Chagollán M, Ceja Gálvez HR, Mora Mora JC, Rentería Flores FI, García González OP, Muñoz Valle JF. Prevalence of symptoms, comorbidities, and reinfections in individuals infected with Wild-Type SARS-CoV-2, Delta, or Omicron variants: a comparative study in western Mexico. Front Public Health 2023; 11:1149795. [PMID: 37181688 PMCID: PMC10174068 DOI: 10.3389/fpubh.2023.1149795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been classified into variants of interest (VOIs) or concern (VOCs) to prioritize global monitoring and research on variants with potential risks to public health. The SARS-CoV-2 high-rate mutation can directly impact the clinical disease progression, epidemiological behavior, immune evasion, vaccine efficacy, and transmission rates. Therefore, epidemiological surveillance is crucial for controlling the COVID-19 pandemic. In the present study, we aimed to describe the prevalence of wild-type (WT) SARS-CoV-2 and Delta and Omicron variants in Jalisco State, Mexico, from 2021 to 2022, and evaluate the possible association of these variants with clinical manifestations of COVID-19. Methods Four thousand and ninety-eight patients diagnosed with COVID-19 by real-time PCR (COVIFLU, Genes2Life, Mexico) from nasopharyngeal samples from January 2021 to January 2022 were included. Variant identification was performed by the RT-qPCR Master Mut Kit (Genes2Life, Mexico). A study population follow-up was performed to identify patients who had experienced reinfection after being vaccinated. Results and Discussion Samples were grouped into variants according to the identified mutations: 46.3% were Omicron, 27.9% were Delta, and 25.8% were WT. The proportions of dry cough, fatigue, headache, muscle pain, conjunctivitis, fast breathing, diarrhea, anosmia, and dysgeusia were significantly different among the abovementioned groups (p < 0.001). Anosmia and dysgeusia were mainly found in WT-infected patients, while rhinorrhea and sore throat were more prevalent in patients infected with the Omicron variant. For the reinfection follow-up, 836 patients answered, from which 85 cases of reinfection were identified (9.6%); Omicron was the VOC that caused all reported reinfection cases. In this study, we demonstrate that the Omicron variant caused the biggest outbreak in Jalisco during the pandemic from late December 2021 to mid-February 2022 but with a less severe form than the one demonstrated by Delta and WT. The co-analysis of mutations and clinical outcomes is a public health strategy with the potential to infer mutations or variants that could increase disease severity and even be an indicator of long-term sequelae of COVID-19.
Collapse
Affiliation(s)
- Marcela Peña Rodríguez
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Hernández Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Natali Vega Magaña
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oliver Viera Segura
- Laboratorio de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariel García Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Hazael Ramiro Ceja Gálvez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jesús Carlos Mora Mora
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Francisco Israel Rentería Flores
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - José Francisco Muñoz Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: José Francisco Muñoz Valle,
| |
Collapse
|
7
|
Valério M, Borges-Araújo L, Melo MN, Lousa D, Soares CM. SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1009451. [PMID: 36277437 PMCID: PMC9581196 DOI: 10.3389/fmedt.2022.1009451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed over 6 million people and is having a devastating social and economic impact around the world. The rise of new variants of concern (VOCs) represents a difficult challenge due to the loss of vaccine and natural immunity, as well as increased transmissibility. All VOCs contain mutations in the spike glycoprotein, which mediates fusion between the viral and host cell membranes. The spike glycoprotein binds to angiotensin-converting enzyme 2 (ACE2) via its receptor binding domain (RBD) initiating the infection process. Attempting to understand the effect of RBD mutations in VOCs, a lot of attention has been given to the RBD-ACE2 interaction. However, this type of analysis ignores more indirect effects, such as the conformational dynamics of the RBD itself. Observing that some mutations occur in residues that are not in direct contact with ACE2, we hypothesized that they could affect the RBD conformational dynamics. To test this, we performed long atomistic (AA) molecular dynamics (MD) simulations to investigate the structural dynamics of wt RBD, and that of four VOCs (Alpha, Beta, Delta, and Omicron). Our results show that the wt RBD presents two distinct conformations: an "open" conformation where it is free to bind ACE2; and a "closed" conformation, where the RBM ridge blocks the binding surface. The Alpha and Beta variants shift the open/closed equilibrium towards the open conformation by roughly 20%, likely increasing ACE2 binding affinity. Simulations of the Delta and Omicron variants showed extreme results, with the closed conformation being rarely observed. The Delta variant also differed substantially from the other variants, alternating between the open conformation and an alternative "reversed" one, with a significantly changed orientation of the RBM ridge. This alternate conformation could provide a fitness advantage due to increased availability for ACE2 binding, and by aiding antibody escape through epitope occlusion. These results support the hypothesis that VOCs, and particularly the Omicron and Delta variants, impact RBD conformational dynamics in a direction that promotes efficient binding to ACE2 and, in the case of Delta, may assist antibody escape.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Luís Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
8
|
Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. A genetically encoded BRET-based SARS-CoV-2 M pro protease activity sensor. Commun Chem 2022; 5:117. [PMID: 36187754 PMCID: PMC9516532 DOI: 10.1038/s42004-022-00731-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease, Mpro, is critical for SARS-CoV-2 replication and an appealing target for designing anti-SARS-CoV-2 agents. Therefore, there is a demand for the development of improved sensors to monitor its activity. Here, we report a pair of genetically encoded, bioluminescence resonance energy transfer (BRET)-based sensors for detecting Mpro proteolytic activity in live cells as well as in vitro. The sensors were generated by sandwiching peptides containing the Mpro N-terminal autocleavage sites, either AVLQSGFR (short) or KTSAVLQSGFRKME (long), in between the mNeonGreen and NanoLuc proteins. Co-expression of the sensors with Mpro in live cells resulted in their cleavage while mutation of the critical C145 residue (C145A) in Mpro completely abrogated their cleavage. Additionally, the sensors recapitulated the inhibition of Mpro by the well-characterized pharmacological agent GC376. Further, in vitro assays with the BRET-based Mpro sensors revealed a molecular crowding-mediated increase in the rate of Mpro activity and a decrease in the inhibitory potential of GC376. The sensors developed here will find direct utility in studies related to drug discovery targeting the SARS-CoV-2 Mpro and functional genomics application to determine the effect of sequence variation in Mpro.
Collapse
Affiliation(s)
- Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Saad Rasool
- Division of Genomics and Precision Medicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - S. M. Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| |
Collapse
|