1
|
Osgood AO, Huang Z, Szalay KH, Chatterjee A. Strategies to Expand the Genetic Code of Mammalian Cells. Chem Rev 2025; 125:2474-2501. [PMID: 39937611 DOI: 10.1021/acs.chemrev.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Arianna O Osgood
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Zeyi Huang
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Kaitlyn H Szalay
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
4
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
5
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
6
|
Soni C, Prywes N, Hall M, Nair MA, Savage DF, Schepartz A, Chatterjee A. A Translation-Independent Directed Evolution Strategy to Engineer Aminoacyl-tRNA Synthetases. ACS CENTRAL SCIENCE 2024; 10:1211-1220. [PMID: 38947215 PMCID: PMC11212135 DOI: 10.1021/acscentsci.3c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
Using directed evolution, aminoacyl-tRNA synthetases (aaRSs) have been engineered to incorporate numerous noncanonical amino acids (ncAAs). Until now, the selection of such novel aaRS mutants has relied on the expression of a selectable reporter protein. However, such translation-dependent selections are incompatible with exotic monomers that are suboptimal substrates for the ribosome. A two-step solution is needed to overcome this limitation: (A) engineering an aaRS to charge the exotic monomer, without ribosomal translation; (B) subsequent engineering of the ribosome to accept the resulting acyl-tRNA for translation. Here, we report a platform for aaRS engineering that directly selects tRNA-acylation without ribosomal translation (START). In START, each distinct aaRS mutant is correlated to a cognate tRNA containing a unique sequence barcode. Acylation by an active aaRS mutant protects the corresponding barcode-containing tRNAs from oxidative treatment designed to damage the 3'-terminus of the uncharged tRNAs. Sequencing of these surviving barcode-containing tRNAs is then used to reveal the identity of the aaRS mutants that acylated the correlated tRNA sequences. The efficacy of START was demonstrated by identifying novel mutants of the Methanomethylophilus alvus pyrrolysyl-tRNA synthetase from a naïve library that enables incorporation of ncAAs into proteins in living cells.
Collapse
Affiliation(s)
- Chintan Soni
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Noam Prywes
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
| | - Matthew Hall
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Malavika A. Nair
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - David F. Savage
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720 United States
| | - Alanna Schepartz
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720 United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
- ARC Institute, Palo Alto, California 94304, United States
| | - Abhishek Chatterjee
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Jewel D, Pham Q, Chatterjee A. Virus-assisted directed evolution of biomolecules. Curr Opin Chem Biol 2023; 76:102375. [PMID: 37542745 PMCID: PMC10870257 DOI: 10.1016/j.cbpa.2023.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 08/07/2023]
Abstract
Directed evolution is a powerful technique that uses principles of natural evolution to enable the development of biomolecules with novel functions. However, the slow pace of natural evolution does not support the demand for rapidly generating new biomolecular functions in the laboratory. Viruses offer a unique path to design fast laboratory evolution experiments, owing to their innate ability to evolve much more rapidly than most living organisms, facilitated by a smaller genome size that tolerate a high frequency of mutations, as well as a fast rate of replication. These attributes offer a great opportunity to evolve various biomolecules by linking their activity to the replication of a suitable virus. This review highlights the recent advances in the application of virus-assisted directed evolution of designer biomolecules in both prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
9
|
Hampton JT, Cho CCD, Coleman DD, Geng ZZ, Chen PH, Dubey G, Sylvain L, Xu S, Liu W. An amber-encoding helper phage for more efficient phage display of noncanonical amino acids. Nucleic Acids Res 2023; 51:6566-6577. [PMID: 37293959 PMCID: PMC10359598 DOI: 10.1093/nar/gkad488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Using an amber suppression-based noncanonical amino acid (ncAA) mutagenesis approach, the chemical space in phage display can be significantly expanded for drug discovery. In this work, we demonstrate the development of a novel helper phage, CMa13ile40, for continuous enrichment of amber obligate phage clones and efficient production of ncAA-containing phages. CMa13ile40 was constructed by insertion of a Candidatus Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/PylT gene cassette into a helper phage genome. The novel helper phage allowed for a continuous amber codon enrichment strategy for two different libraries and demonstrated a 100-fold increase in packaging selectivity. CMa13ile40 was then used to create two peptide libraries containing separate ncAAs, Nϵ-tert-butoxycarbonyl-lysine and Nϵ-allyloxycarbonyl-lysine, respectively. These libraries were used to identify peptide ligands that bind to the extracellular domain of ZNRF3. Each selection showed differential enrichment of unique sequences dependent upon the ncAA used. Peptides from both selections were confirmed to have low micromolar affinity for ZNRF3 that was dependent upon the presence of the ncAA used for selection. Our results demonstrate that ncAAs in phages provide unique interactions for identification of unique peptides. As an effective tool for phage display, we believe that CMa13ile40 can be broadly applied to a wide variety of applications.
Collapse
Affiliation(s)
- Joshua Trae Hampton
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Chia-Chuan Dean Cho
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Demonta D Coleman
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Peng-Hsun Chase Chen
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Gopal K Dubey
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Lauralee D Sylvain
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Lahiri P, Martin MS, Lino BR, Scheck RA, Van Deventer JA. Dual Noncanonical Amino Acid Incorporation Enabling Chemoselective Protein Modification at Two Distinct Sites in Yeast. Biochemistry 2023; 62:2098-2114. [PMID: 37377426 PMCID: PMC11146674 DOI: 10.1021/acs.biochem.2c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Incorporation of more than one noncanonical amino acid (ncAA) within a single protein endows the resulting construct with multiple useful features such as augmented molecular recognition or covalent cross-linking capabilities. Herein, for the first time, we demonstrate the incorporation of two chemically distinct ncAAs into proteins biosynthesized in Saccharomyces cerevisiae. To complement ncAA incorporation in response to the amber (TAG) stop codon in yeast, we evaluated opal (TGA) stop codon suppression using three distinct orthogonal translation systems. We observed selective TGA readthrough without detectable cross-reactivity from host translation components. Readthrough efficiency at TGA was modulated by factors including the local nucleotide environment, gene deletions related to the translation process, and the identity of the suppressor tRNA. These observations facilitated systematic investigation of dual ncAA incorporation in both intracellular and yeast-displayed protein constructs, where we observed efficiencies up to 6% of wild-type protein controls. The successful display of doubly substituted proteins enabled the exploration of two critical applications on the yeast surface─(A) antigen binding functionality and (B) chemoselective modification with two distinct chemical probes through sequential application of two bioorthogonal click chemistry reactions. Lastly, by utilizing a soluble form of a doubly substituted construct, we validated the dual incorporation system using mass spectrometry and demonstrated the feasibility of conducting selective labeling of the two ncAAs sequentially using a "single-pot" approach. Overall, our work facilitates the addition of a 22nd amino acid to the genetic code of yeast and expands the scope of applications of ncAAs for basic biological research and drug discovery.
Collapse
Affiliation(s)
- Priyanka Lahiri
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Meghan S. Martin
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Rebecca A. Scheck
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
11
|
Beattie AT, Dunkelmann DL, Chin JW. Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNA Pyl pairs. Nat Chem 2023; 15:948-959. [PMID: 37322102 PMCID: PMC7615293 DOI: 10.1038/s41557-023-01232-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Mutually orthogonal aminoacyl transfer RNA synthetase/transfer RNA pairs provide a foundation for encoding non-canonical amino acids into proteins, and encoded non-canonical polymer and macrocycle synthesis. Here we discover quintuply orthogonal pyrrolysyl-tRNA synthetase (PylRS)/pyrrolysyl-tRNA (tRNAPyl) pairs. We discover empirical sequence identity thresholds for mutual orthogonality and use these for agglomerative clustering of PylRS and tRNAPyl sequences; this defines numerous sequence clusters, spanning five classes of PylRS/tRNAPyl pairs (the existing classes +N, A and B, and newly defined classes C and S). Most of the PylRS clusters belong to classes that were unexplored for orthogonal pair generation. By testing pairs from distinct clusters and classes, and pyrrolysyl-tRNAs with unusual structures, we resolve 80% of the pairwise specificities required to make quintuply orthogonal PylRS/tRNAPyl pairs; we control the remaining specificities by engineering and directed evolution. Overall, we create 924 mutually orthogonal PylRS/tRNAPyl pairs, 1,324 triply orthogonal pairs, 128 quadruply orthogonal pairs and 8 quintuply orthogonal pairs. These advances may provide a key foundation for encoded polymer synthesis.
Collapse
Affiliation(s)
- Adam T Beattie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
12
|
Seki K, Galindo JL, Karim AS, Jewett MC. A Cell-Free Gene Expression Platform for Discovering and Characterizing Stop Codon Suppressing tRNAs. ACS Chem Biol 2023; 18:1324-1334. [PMID: 37257197 DOI: 10.1021/acschembio.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-canonical amino acids (ncAAs) can be incorporated into peptides and proteins to create new properties and functions. Site-specific ncAA incorporation is typically enabled by orthogonal translation systems comprising a stop codon suppressing tRNA (typically UAG), an aminoacyl-tRNA synthetase, and an ncAA of interest. Unfortunately, methods to discover and characterize suppressor tRNAs are limited because of laborious and time-consuming workflows in living cells. In this work, we develop anEscherichia coli crude extract-based cell-free gene expression system to rapidly express and characterize functional suppressor tRNAs. Our approach co-expresses orthogonal tRNAs using endogenous machinery alongside a stop-codon containing superfolder green fluorescent protein (sfGFP) reporter, which can be used as a simple read-out for suppression. As a model, we evaluate the UAG and UAA suppressing activity of several orthogonal tRNAs. Then, we demonstrate that co-transcription of two mutually orthogonal tRNAs can direct the incorporation of two unique ncAAs within a single modified sfGFP. Finally, we show that the cell-free workflow can be used to discover putative UAG-suppressor tRNAs found in metagenomic data, which are nonspecifically recognized by endogenous aminoacyl-tRNA synthetases. We anticipate that our cell-free system will accelerate the development of orthogonal translation systems for synthetic biology.
Collapse
Affiliation(s)
- Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joey L Galindo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
13
|
Yanagisawa T, Seki E, Tanabe H, Fujii Y, Sakamoto K, Yokoyama S. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids. Int J Mol Sci 2023; 24:ijms24076256. [PMID: 37047230 PMCID: PMC10094482 DOI: 10.3390/ijms24076256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Pairs of pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). Previously, we achieved full productivity of cell-free protein synthesis for bulky non-canonical amino acids, including Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS with structure-based mutations in and around the amino acid binding pocket (first-layer and second-layer mutations, respectively). Recently, the PylRS·tRNAPyl pair from a methanogenic archaeon ISO4-G1 was used for genetic code expansion. In the present study, we determined the crystal structure of the methanogenic archaeon ISO4-G1 PylRS (ISO4-G1 PylRS) and compared it with those of structure-known PylRSs. Based on the ISO4-G1 PylRS structure, we attempted the site-specific incorporation of Nε-(p-ethynylbenzyloxycarbonyl)-L-lysine (pEtZLys) into proteins, but it was much less efficient than that of TCO*Lys with M. alvus PylRS mutants. Thus, the first-layer mutations (Y125A and M128L) of ISO4-G1 PylRS, with no additional second-layer mutations, increased the protein productivity with pEtZLys up to 57 ± 8% of that with TCO*Lys at high enzyme concentrations in the cell-free protein synthesis.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan;
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
- Correspondence: (T.Y.); (S.Y.); Tel.: +81-45-503-9196 (S.Y.)
| | - Eiko Seki
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Hiroaki Tanabe
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Yoshifumi Fujii
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Kensaku Sakamoto
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
- Correspondence: (T.Y.); (S.Y.); Tel.: +81-45-503-9196 (S.Y.)
| |
Collapse
|
14
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
15
|
Jiang HK, Ambrose NL, Chung CZ, Wang YS, Söll D, Tharp JM. Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression. Proc Natl Acad Sci U S A 2023; 120:e2219758120. [PMID: 36787361 PMCID: PMC9974479 DOI: 10.1073/pnas.2219758120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Synthetic biology tools for regulating gene expression have many useful biotechnology and therapeutic applications. Most tools developed for this purpose control gene expression at the level of transcription, and relatively few methods are available for regulating gene expression at the translational level. Here, we design and engineer split orthogonal aminoacyl-tRNA synthetases (o-aaRS) as unique tools to control gene translation in bacteria and mammalian cells. Using chemically induced dimerization domains, we developed split o-aaRSs that mediate gene expression by conditionally suppressing stop codons in the presence of the small molecules rapamycin and abscisic acid. By activating o-aaRSs, these molecular switches induce stop codon suppression, and in their absence stop codon suppression is turned off. We demonstrate, in Escherichia coli and in human cells, that split o-aaRSs function as genetically encoded AND gates where stop codon suppression is controlled by two distinct molecular inputs. In addition, we show that split o-aaRSs can be used as versatile biosensors to detect therapeutically relevant protein-protein interactions, including those involved in cancer, and those that mediate severe acute respiratory syndrome-coronavirus-2 infection.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Institute of Biological Chemistry, Academia Sinica, Taipei11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu100044, Taiwan
| | - Nicole L. Ambrose
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| | - Christina Z. Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Department of Chemistry, Yale University, New Haven, CT06511
| | - Jeffery M. Tharp
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
16
|
Gottfried-Lee I, Perona JJ, Karplus PA, Mehl RA, Cooley RB. Structures of Methanomethylophilus alvus Pyrrolysine tRNA-Synthetases Support the Need for De Novo Selections When Altering the Substrate Specificity. ACS Chem Biol 2022; 17:3470-3477. [PMID: 36395426 PMCID: PMC9833844 DOI: 10.1021/acschembio.2c00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A recently developed genetic code expansion (GCE) platform based on the pyrrolysine amino-acyl tRNA synthetase (PylRS)/tRNAPyl pair from Methanomethylophilus alvus (Ma) has improved solubility and lower susceptibility to proteolysis compared with the homologous and commonly used Methanosarcina barkeri (Mb) and M. mazei (Mm) PylRS GCE platforms. We recently created two new Ma PylRS variants for the incorporation of the fluorescent amino acid, acridonyl-alanine (Acd), into proteins at amber codons: one based on "transplanting" active site mutations from an established high-efficiency Mb PylRS and one that was de novo selected from a library of mutants. Here, we present the crystal structures of these two Ma PylRS variants with Acd/ATP bound to understand why the "active site transplant" variant (Acd-AST) displayed 6-fold worse Acd incorporation efficiency than the de novo selected PylRS (called Acd-RS1). The structures reveal that the Acd-AST binding pocket is too small and binds the three-ring aromatic Acd in a distorted conformation, whereas the more spacious Acd-RS1 active site binds Acd in a relaxed, planar conformation stabilized by a network of solvent-mediated hydrogen bonds. The poor performance of the AST enzyme is ascribed to a shift in the Ma PylRS β-sheet framework relative to that of the Mb enzyme. This illustrates a general reason why "active site transplantation" may not succeed in creating efficient Ma PylRSs for other noncanonical amino acids. This work also provides structural details that will help guide the development of future Ma PylRS/tRNAPyl GCE systems via de novo selection or directed evolution methods.
Collapse
Affiliation(s)
- Ilana Gottfried-Lee
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - John J. Perona
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| |
Collapse
|
17
|
Avila-Crump S, Hemshorn ML, Jones CM, Mbengi L, Meyer K, Griffis JA, Jana S, Petrina GE, Pagar VV, Karplus PA, Petersson EJ, Perona JJ, Mehl RA, Cooley RB. Generating Efficient Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids. ACS Chem Biol 2022; 17:3458-3469. [PMID: 36383641 PMCID: PMC9833845 DOI: 10.1021/acschembio.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic code expansion (GCE) technologies commonly use the pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei (Mm) and Methanosarcina barkeri (Mb) for site-specific incorporation of non-canonical amino acids (ncAAs) into proteins. Recently a homologous PylRS/tRNAPyl pair from Candidatus Methanomethylophilus alvus Mx1201 (Ma) was developed that, lacking the N-terminal tRNA-recognition domain of most PylRSs, overcomes insolubility, instability, and proteolysis issues seen with Mb/Mm PylRSs. An open question is how to alter Ma PylRS specificity to encode specific ncAAs with high efficiency. Prior work focused on "transplanting" ncAA substrate specificity by reconstructing the same active site mutations found in functional Mm/Mb PylRSs in Ma PylRS. Here, we found that this strategy produced low-efficiency Ma PylRSs for encoding three structurally diverse ncAAs: acridonyl-alanine (Acd), 3-nitro-tyrosine, and m-methyl-tetrazinyl-phenylalanine (Tet3.0-Me). On the other hand, efficient Ma PylRS variants were generated by a conventional life/death selection process from a large library of active site mutants: for Acd encoding, one variant was highly functional in HEK293T cells at just 10 μM Acd; for nitroY encoding, two variants also encoded 3-chloro, 3-bromo-, and 3-iodo-tyrosine at high efficiency; and for Tet-3.0-Me, all variants were more functional at lower ncAA concentrations. All Ma PylRS variants identified through selection had at least two different active site residues when compared with their Mb PylRS counterparts. We conclude that Ma and Mm/Mb PylRSs are sufficiently different that "active site transplantation" yields suboptimal Ma GCE systems. This work establishes a paradigm for expanding the utility of the promising Ma PylRS/tRNAPyl GCE platform.
Collapse
Affiliation(s)
- Savanna Avila-Crump
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Marcus L. Hemshorn
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Chloe M. Jones
- Biochemistry and Molecular Biophysics Graduate Group; University of Pennsylvania; 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lea Mbengi
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Kyle Meyer
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Joshua A. Griffis
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Grace E. Petrina
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Vinayak V. Pagar
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - John J. Perona
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Allen GL, Grahn AK, Kourentzi K, Willson RC, Waldrop S, Guo J, Kay BK. Expanding the chemical diversity of M13 bacteriophage. Front Microbiol 2022; 13:961093. [PMID: 36003937 PMCID: PMC9393631 DOI: 10.3389/fmicb.2022.961093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage M13 virions are very stable nanoparticles that can be modified by chemical and genetic methods. The capsid proteins can be functionalized in a variety of chemical reactions without loss of particle integrity. In addition, Genetic Code Expansion (GCE) permits the introduction of non-canonical amino acids (ncAAs) into displayed peptides and proteins. The incorporation of ncAAs into phage libraries has led to the discovery of high-affinity binders with low nanomolar dissociation constant (K D) values that can potentially serve as inhibitors. This article reviews how bioconjugation and the incorporation of ncAAs during translation have expanded the chemistry of peptides and proteins displayed by M13 virions for a variety of purposes.
Collapse
Affiliation(s)
| | | | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Sean Waldrop
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Brian K. Kay
- Tango Biosciences, Inc., Chicago, IL, United States
| |
Collapse
|