1
|
Pradhan S, Biswas M. Exploring minimum free-energy pathway of GB1 dimerization in dilute and crowded solution. J Chem Phys 2025; 162:225101. [PMID: 40492561 DOI: 10.1063/5.0260968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/16/2025] [Indexed: 06/12/2025] Open
Abstract
The intracellular crowded environment plays a major role in driving the protein-protein association reaction that entails large conformational fluctuations. A detailed understanding of the crowding influence on protein association requires characterization of transient intermediates on a free energy landscape. In this work, we explore the free energy landscape of dimerization of protein GB1 in a dilute and crowded medium by employing advanced sampling techniques, such as metadynamics and parallel tempering. Dimerization proceeds via a single dominant pathway encountering few minima in dilute solutions. However, in presence of lysozyme crowders, the free energy landscape exhibits multiple minima and multiple barriers, providing alternative pathways for dimerization. The minimum free energy pathway indicates that dimerization starts by destabilizing the N-termini of monomers in both the cases. The population of the on-pathway intermediate states in dilute medium reveals the structural modulations in GB1 conformation that eventually lead to a final dimer-like state. The presence of lysozyme crowders stabilizes new intermediates, although no stable dimer is formed. The study highlights modification of dimerization pathway by attractive protein-crowder interactions.
Collapse
Affiliation(s)
- Sweta Pradhan
- National Institute of Technology Rourkela, Rourkela 769008, India
| | - Mithun Biswas
- National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
2
|
Senarathne DS, Shahu L, Lu HP. Probing the Epidermal Growth Factor Receptor under Piconewton Mechanical Compressive Force Manipulations. J Phys Chem B 2025. [PMID: 40423669 DOI: 10.1021/acs.jpcb.5c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Studying the relationship among protein structure, dynamics, and function under external compressive forces offers valuable insights. While extensive research has focused on manipulating protein dynamics and ligand-receptor interactions under pulling forces, the exploration of protein conformational changes under compressive forces has been limited. In this study, we investigate the response of unliganded epidermal growth factor receptor (EGFR) monomers, liganded EGF-EGFR monomers, and dimers when exposed to external compressive forces using a home-modified AFM setup with an ultrasoft AFM tip. We observed that both ligand-bound and unbound EGFR proteins can undergo spontaneous tertiary structural rupture under piconewton-level compressive forces, a previously hidden protein behavior that may play a significant role in protein cell signaling. The magnitudes of the threshold compressive forces obtained in our study lie in the range of tens and hundreds of piconewtons (pN), which is accessible within a live biological system. Moreover, we developed a kinetic model to exhibit that only a fraction of the uniaxial compressive force exerted by the AFM tip affects the internal tension that causes a pseudopulling force within the protein before it undergoes the tertiary structural rupture. This calculated fraction ranged from 0.45 to 0.65, depending on the protein type and the approach velocity of the AFM tip. Additionally, we employed molecular dynamics (MD) simulations, particularly Steered MD (SMD) simulations along with Umbrella Sampling (US), to investigate the dynamics of unliganded and liganded EGFR in the presence of external compressive forces. These MD simulation results offer valuable insights into the flexibilities and unfolding behaviors of both liganded and unliganded EGFR proteins when subjected to external compressive forces.
Collapse
Affiliation(s)
- Dedunu S Senarathne
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Lalita Shahu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
3
|
Volynets GP, Gudzera OI, Usenko MO, Gorbatiuk OB, Bdzhola VG, Kotey IM, Balanda AO, Prykhod'ko AO, Lukashov SS, Chuk OA, Skydanovych OI, Yaremchuk GD, Yarmoluk SM, Tukalo MA. Probing the Molecular Basis of Aminoacyl-Adenylate Affinity With Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis. J Mol Recognit 2025; 38:e3110. [PMID: 39478352 DOI: 10.1002/jmr.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 02/01/2025]
Abstract
Leucyl-tRNA synthetase (LeuRS) is clinically validated molecular target for antibiotic development. Recently, we have reported several classes of small-molecular inhibitors targeting aminoacyl-adenylate binding site of Mycobacterium tuberculosis LeuRS with antibacterial activity. In this work, we performed in silico site-directed mutagenesis of M. tuberculosis LeuRS synthetic site in order to identify the most critical amino acid residues for the interaction with substrate and prove binding modes of inhibitors. We carried out 20-ns molecular dynamics (MD) simulations and used umbrella sampling (US) method for the calculation of the binding free energy (ΔGb) of leucyl-adenylate with wild-type and mutated forms of LeuRS. According to molecular modeling results, it was found that His89, Tyr93, and Glu660 are essential amino acid residues both for aminoacyl-adenylate affinity and hydrogen bond formation. We have selected His89 for experimental site-directed mutagenesis since according to our previous molecular docking results this amino acid residue was predicted to be important for inhibitor interaction in adenine-binding region. We obtained recombinant mutant M. tuberculosis LeuRS H89A. Using aminoacylation assay we have found that the mutation of His89 to Ala in the active site of M. tuberculosis LeuRS results in significant decrease of inhibitory activity for compounds belonging to three different chemical classes-3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles, N-benzylidene-N'-thiazol-2-yl-hydrazines, and 1-oxo-1H-isothiochromene-3-carboxylic acid (4-phenyl-thiazol-2-yl)-amide derivatives. Therefore, the interaction with His89 should be taken into account during further M. tuberculosis LeuRS inhibitors development and optimization.
Collapse
Affiliation(s)
- Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
- Scientific Services Company Otava Ltd., Kyiv, Ukraine
| | - Olga I Gudzera
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Mariia O Usenko
- Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Oksana B Gorbatiuk
- Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Igor M Kotey
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Anatoliy O Balanda
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Andrii O Prykhod'ko
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
- Scientific Services Company Otava Ltd., Kyiv, Ukraine
| | - Sergiy S Lukashov
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | | | - Oleksandra I Skydanovych
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Ganna D Yaremchuk
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Wang YJ, Valotteau C, Aimard A, Villanueva L, Kostrz D, Follenfant M, Strick T, Chames P, Rico F, Gosse C, Limozin L. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Biophys J 2023; 122:2518-2530. [PMID: 37290437 PMCID: PMC10323022 DOI: 10.1016/j.bpj.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.
Collapse
Affiliation(s)
- Yong Jian Wang
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| | - Claire Valotteau
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Adrien Aimard
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Lorenzo Villanueva
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Patrick Chames
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Felix Rico
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| |
Collapse
|