1
|
Min J, Kim B, Park Y, Son Y, Park W. Bacterial cell wall synthesis and recycling: new antimicrobial targets and vaccine development. Crit Rev Microbiol 2025:1-20. [PMID: 40432488 DOI: 10.1080/1040841x.2025.2510250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Almost all bacteria have peptidoglycan (PG) components that are essential for virulence and are absent in humans, making them a top-priority target for antibiotics and vaccines. The rise of multidrug-resistant bacteria (MRB) necessitates urgent expansion of our arsenal of inhibitors targeting the PG cell wall. This review addresses our understanding of PG biosynthesis and recycling processes, emphasizing the need to identify novel target proteins and redesign existing PG-targeted antimicrobial peptides. Building on our understanding of cell wall biochemistry and biogenesis derived from Escherichia coli, we also aim to compare and elucidate the cell wall processes in other pathogens, such as Acinetobacter baumannii and Salmonella Typhimurium, where knowledge remains incomplete. We cover in detail the distinct roles of PG-related proteins in Gram-negative bacteria, strategies to block PG biosynthesis/recycling pathways, and their potential as novel antibiotic targets to address the growing challenge of antibiotic resistance. Finally, we review the application of rigorous immuno-informatics analysis and several immune filters to construct epitope-specific vaccines displaying PG-related proteins on the surface of outer membrane vesicles (OMVs), aiming to combat MRB proliferation.
Collapse
Affiliation(s)
- Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Liu Q, Luo A, Jin H, Si X, Li M. Machine Learning-Based Discovery of a Novel Noncovalent MurA Inhibitor as an Antibacterial Agent. Chem Biol Drug Des 2025; 105:e70084. [PMID: 40077992 DOI: 10.1111/cbdd.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
The bacterial cell wall is crucial for maintaining the integrity of bacterial cells. UDP-N-acetylglucosamine 1-carboxyethylene transferase (MurA) is an important enzyme involved in bacterial cell wall synthesis. Therefore, it is an important target for antibacterial drug research. Although many MurA inhibitors have been discovered, only fosfomycin is still used as a MurA inhibitor in clinical practice. Owing to the long-term use of fosfomycin, the emergence of fosfomycin resistance is worrisome. Therefore, it is still necessary to discover new MurA inhibitors with different types of action than fosfomycin. In this study, we used AutoMolDesigner to construct a machine learning model combined with molecular docking to screen for noncovalent MurA inhibitors. We subsequently conducted the MurA inhibition activity assay and identified compound L16 (N-(3-(benzo[d]oxazol-2-yl)-4-hydroxyphenyl) carbamoyl-4-methylbenzamide) as a moderately active MurA inhibitor (IC50 = 26.63 ± 1.60 μM). The compound was structurally different from other known MurA inhibitors. We used molecular dynamics simulation to reveal possible interactions between the compound and MurA. In addition, we also found that compound L16 was nontoxic to human liver cancer cells (HepG2) (IC50 > 100 μM). In conclusion, through virtual screening and in vitro biological evaluation, we identified a novel structural type of MurA inhibitor which may become a candidate drug for inhibiting bacterial cell wall synthesis.
Collapse
Affiliation(s)
- Qingxin Liu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Aoqi Luo
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Ming Li
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
- Department of Pharmacy, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| |
Collapse
|
3
|
Gao Y, Deng Y, Geng W, Xiao S, Wang T, Xu X, Adeli M, Cheng L, Qiu L, Cheng C. Infectious and Inflammatory Microenvironment Self-Adaptive Artificial Peroxisomes with Synergetic Co-Ru Pair Centers for Programmed Diabetic Ulcer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408787. [PMID: 39096078 DOI: 10.1002/adma.202408787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Complex microenvironments with bacterial infection, persistent inflammation, and impaired angiogenesis are the major challenges in chronic refractory diabetic ulcers. To address this challenge, a comprehensive strategy with highly effective and integrated antimicrobial, anti-inflammatory, and accelerated angiogenesis will offer a new pathway to the rapid healing of infected diabetic ulcers. Here, inspired by the tunable reactive oxygen species (ROS) regulation properties of natural peroxisomes, this work reports the design of infectious and inflammatory microenvironments self-adaptive artificial peroxisomes with synergetic Co-Ru pair centers (APCR) for programmed diabetic ulcer therapy. Benefiting from the synergistic Co and Ru atoms, the APCR can simultaneously achieve ROS production and metabolic inhibition for bacterial sterilization in the infectious microenvironment. After disinfection, the APCR can also eliminate ROS to alleviate oxidative stress in the inflammatory microenvironment and promote wound regeneration. The data demonstrate that the APCR combines highly effective antibacterial, anti-inflammatory, and provascular regeneration capabilities, making it an efficient and safe nanomedicine for treating infectious and inflammatory diabetic foot ulcers via a programmed microenvironment self-adaptive treatment pathway. This work expects that synthesizing artificial peroxisomes with microenvironments self-adaptive and bifunctional enzyme-like ROS regulation properties will provide a promising path to construct ROS catalytic materials for treating complex diabetic ulcers, trauma, or other infection-caused diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Xu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Lorestan University, Khorramabad, 6815144316, Iran
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Li Qiu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
de Oliveira MVD, da Costa KS, Silva JRA, Lameira J, Lima AH. Role of UDP-N-acetylmuramic acid in the regulation of MurA activity revealed by molecular dynamics simulations. Protein Sci 2024; 33:e4969. [PMID: 38532715 PMCID: PMC10966352 DOI: 10.1002/pro.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The peptidoglycan biosynthesis pathway plays a vital role in bacterial cells, and facilitates peptidoglycan layer formation, a fundamental structural component of the bacterial cell wall. The enzymes in this pathway are candidates for antibiotic development, as most do not have mammalian homologues. The UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase enzyme (MurA) in the peptidoglycan pathway cytoplasmic step is responsible for the phosphoenolpyruvate (PEP)-UNAG catalytic reaction, forming UNAG enolpyruvate and inorganic phosphate. Reportedly, UDP-N-acetylmuramic acid (UNAM) binds tightly to MurA forming a dormant UNAM-PEP-MurA complex and acting as a MurA feedback inhibitor. MurA inhibitors are complex, owing to competitive binding interactions with PEP, UNAM, and UNAG at the MurA active site. We used computational methods to explore UNAM and UNAG binding. UNAM showed stronger hydrogen-bond interactions with the Arg120 and Arg91 residues, which help to stabilize the closed conformation of MurA, than UNAG. Binding free energy calculations using end-point computational methods showed that UNAM has a higher binding affinity than UNAG, when PEP is attached to Cys115. The unbinding process, simulated using τ-random acceleration molecular dynamics, showed that UNAM has a longer relative residence time than UNAG, which is related to several complex dissociation pathways, each with multiple intermediate metastable states. This prevents the loop from opening and exposing the Arg120 residue to accommodate UNAG and potential new ligands. Moreover, we demonstrate the importance of Cys115-linked PEP in closed-state loop stabilization. We provide a basis for evaluating novel UNAM analogues as potential MurA inhibitors. PUBLIC SIGNIFICANCE: MurA is a critical enzyme involved in bacterial cell wall biosynthesis and is involved in antibiotic resistance development. UNAM can remain in the target protein's active site for an extended time compared to its natural substrate, UNAG. The prolonged interaction of this highly stable complex known as the 'dormant complex' comprises UNAM-PEP-MurA and offers insights into antibiotic development, providing potential options against drug-resistant bacteria and advancing our understanding of microbial biology.
Collapse
Affiliation(s)
| | - Kauê S. da Costa
- Institute of BiodiversityFederal University of Western ParáSantarémParáBrazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e NaturaisUniversidade Federal do ParáBelémParáBrazil
- Catalysis and Peptide Research UnitUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e NaturaisUniversidade Federal do ParáBelémParáBrazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e NaturaisUniversidade Federal do ParáBelémParáBrazil
| |
Collapse
|
5
|
Frlan R, Hrast M, Gobec S. Inhibition of MurA Enzyme from Escherichia coli by Flavonoids and Their Synthetic Analogues. ACS OMEGA 2023; 8:33006-33016. [PMID: 37720776 PMCID: PMC10500568 DOI: 10.1021/acsomega.3c04813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
MurA catalyzes the first step of peptidoglycan (PG) biosynthesis and is a validated target for the development of new antimicrobial agents. In this study, a library of 49 plant flavonoids and their synthetic derivatives were evaluated for their inhibitory properties against MurA fromEscherichia coli. The compounds were tested with and without preincubation and with the addition of DTT to understand the mechanism of inhibition. Thirteen compounds were identified as reversible, time-dependent inhibitors, with inhibition levels ranging from 480 nM to 57 μM, and ampelopsin as the most potent compound. To investigate the major pharmacophore elements responsible for the activity, 2D-QSAR and docking analyzes were performed. The results showed that the catechol moiety and an additional aromatic system were the most important features contributing to the activity of the compounds. However, most of the compounds did not show antibacterial activity againstE. coli andStaphylococcus aureusstrains, suggesting that their inhibitory activity against MurA may not be strong enough to induce antibacterial effects. Nevertheless, our results suggest that flavonoids are a promising starting point to develop new inhibitors of MurA and show great potential for further steps in drug development.
Collapse
Affiliation(s)
- Rok Frlan
- The Department of Pharmaceutical
Chemistry, University of Ljubljana, Faculty
of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Martina Hrast
- The Department of Pharmaceutical
Chemistry, University of Ljubljana, Faculty
of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- The Department of Pharmaceutical
Chemistry, University of Ljubljana, Faculty
of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Stefanović C, Hager-Mair FF, Breslmayr E, López-Guzmán A, Lim C, Blaukopf M, Kosma P, Oostenbrink C, Ludwig R, Schäffer C. Molecular modelling and site-directed mutagenesis provide insight into saccharide pyruvylation by the Paenibacillus alvei CsaB enzyme. Sci Rep 2023; 13:13394. [PMID: 37591902 PMCID: PMC10435577 DOI: 10.1038/s41598-023-40072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Pyruvylation is a biologically versatile but mechanistically unexplored saccharide modification. 4,6-Ketal pyruvylated N-acetylmannosamine within bacterial secondary cell wall polymers serves as a cell wall anchoring epitope for proteins possessing a terminal S-layer homology domain trimer. The pyruvyltransferase CsaB from Paenibacillus alvei served as a model to investigate the structural basis of the pyruvyltransfer reaction by a combination of molecular modelling and site-directed mutagenesis together with an enzyme assay using phosphoenolpyruvate (PEP; donor) and synthetic β-D-ManNAc-(1 → 4)-α-D-GlcNAc-diphosphoryl-11-phenoxyundecyl (acceptor). CsaB protein structure modelling was done using Phyre2 and I-Tasser based on the partial crystal structure of the Schizosaccharomyces pombe pyruvyltransferase Pvg1p and by AlphaFold. The models informed the construction of twelve CsaB mutants targeted at plausible PEP and acceptor binding sites and KM and kcat values were determined to evaluate the mutants, indicating the importance of a loop region for catalysis. R148, H308 and K328 were found to be critical to PEP binding and insight into acceptor binding was obtained from an analysis of Y14 and F16 mutants, confirming the modelled binding sites and interactions predicted using Molecular Operating Environment. These data lay the basis for future mechanistic studies of saccharide pyruvylation as a novel target for interference with bacterial cell wall assembly.
Collapse
Affiliation(s)
- Cordula Stefanović
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
| | - Fiona F Hager-Mair
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
| | - Erik Breslmayr
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
- Department of Material Sciences and Process Engineering, Institute for Molecular Modelling and Simulation, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Arturo López-Guzmán
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
- Covirabio GmbH, Brehmstrasse 14a, 1110, Vienna, Austria
| | - Charlie Lim
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute for Molecular Modelling and Simulation, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria.
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
7
|
Obando MA, Dörr T. Novel role for peptidoglycan carboxypeptidases in maintaining the balance between bacterial cell wall synthesis and degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548665. [PMID: 37503280 PMCID: PMC10369974 DOI: 10.1101/2023.07.12.548665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulation factors in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium was answered by hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote PG degradation. Our data thus reveal a key role of DacA1 in maintaining the balance between PG synthesis and degradation.
Collapse
Affiliation(s)
- Manuela Alvarado Obando
- Department of Microbiology, Cornell University, Ithaca, NY
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, NY
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|