1
|
Malard F, Massman L, Campagne S, Olivier-Van Stichelen S. The O-GlcNAc database: introducing new features and tools developed from community feedback. Anal Bioanal Chem 2025; 417:879-884. [PMID: 39379619 DOI: 10.1007/s00216-024-05571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
O-GlcNAc is a reversible post-translational modification found on serine and threonine residues of nucleocytoplasmic proteins. Four years ago, we released the O-GlcNAc Database ( oglcnac.mcw.edu ), a comprehensive catalog of O-GlcNAcylated proteins that has become one of the most cited resources in the field, with hundreds of unique users per month. We are now presenting an updated O-GlcNAc Database, which includes nearly 20,000 O-GlcNAcylated proteins and 48 species, marking substantial growth in data volume and scope. This paper presents the most noteworthy features implemented over the last year, often originating from feedback from the O-GlcNAc community. Among these features, we provide a brief overview of the database content, introduce our new protein viewer mode, and discuss the implementation of subcellular localization information and its applications in the O-GlcNAc score. We also provide an interface to use CytOVS, a tool designed to evaluate and sort O-GlcNAcome datasets derived from MS experiments. In conclusion, this new and improved O-GlcNAc Database represents a significant advancement in providing a comprehensive and expanded resource for researchers in the field of O-GlcNAc biology.
Collapse
Affiliation(s)
- Florian Malard
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux, France
| | - Lilyanna Massman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sébastien Campagne
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux, France
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Saunders HI, Holloran SM, Trinca GM, Artigues A, Villar M, Tinoco JC, Dias WB, Werner LR, Chowanec EI, Heard A, Chalise P, Slawson C, Hagan CR. Site-specific O-GlcNAcylation of progesterone receptor (PR) supports PR attenuation of interferon stimulated genes (ISGs) and tumor growth in breast cancer. J Biol Chem 2024; 300:107886. [PMID: 39395796 PMCID: PMC11609360 DOI: 10.1016/j.jbc.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Hormone receptor positive (HR+) breast cancer, defined by expression of estrogen receptor (ER) and/or progesterone receptor (PR), is the most commonly diagnosed type of breast cancer. PR alters the transcriptional landscape to support tumor growth in concert with, or independent of, ER. Understanding the mechanisms regulating PR function is critical to developing new strategies to treat HR+ breast cancer. O-linked β-N-acetylglucosamine (O-GlcNAc) is a posttranslational modification responsible for nutrient sensing that modulates protein function. Although PR is heavily posttranslationally modified, through both phosphorylation and O-GlcNAcylation, specific sites of O-GlcNAcylation on PR and how they regulate PR action have not been investigated. Using established PR-expressing breast cancer cell lines, we mapped several sites of O-GlcNAcylation on PR. RNA-sequencing after PR O-GlcNAc site mutagenesis revealed site-specific O-GlcNAcylation of PR is critical for ligand-independent suppression of interferon signaling, a regulatory function of PR in breast cancer. Furthermore, O-GlcNAcylation of PR enhances PR-driven tumor growth in vivo. Herein, we have delineated one contributing mechanism to PR function in breast cancer that impacts tumor growth and provided additional insight into the mechanism through which PR attenuates interferon signaling.
Collapse
Affiliation(s)
- Harmony I Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sean M Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maite Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julio C Tinoco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner Barbosa Dias
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauryn R Werner
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Eilidh I Chowanec
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amanda Heard
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
3
|
El Hajjar L, Page A, Bridot C, Cantrelle FX, Landrieu I, Smet-Nocca C. Regulation of Glycogen Synthase Kinase-3β by Phosphorylation and O-β-Linked N-Acetylglucosaminylation: Implications on Tau Protein Phosphorylation. Biochemistry 2024; 63:1513-1533. [PMID: 38788673 DOI: 10.1021/acs.biochem.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3β isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3β kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3β kinase activity only on primed tau, thereby selectively inactivating GSK3β toward unprimed tau protein. Additionally, we have shown that GSK3β is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3β kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3β, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3β kinase activity.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Adeline Page
- Protein Science Facility, SFR Biosciences Univ Lyon, ENS de Lyon, CNRS UAR3444, Inserm US8, Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier, Lyon F-69007, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| |
Collapse
|
4
|
Luna S, Malard F, Pereckas M, Aoki M, Aoki K, Olivier-Van Stichelen S. Studying the O-GlcNAcome of human placentas using banked tissue samples. Glycobiology 2024; 34:cwae005. [PMID: 38253038 PMCID: PMC11005170 DOI: 10.1093/glycob/cwae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 μg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.
Collapse
Affiliation(s)
- Sarai Luna
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Florian Malard
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Mayumi Aoki
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Kazuhiro Aoki
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Department of Cell Biology, Neurobiology and Anatomy (CBNA), Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| |
Collapse
|
5
|
Escobar EE, Seeley EH, Serrano-Negrón JE, Vocadlo DJ, Brodbelt JS. In Situ Imaging of O-Linked β-N-Acetylglucosamine Using On-Tissue Hydrolysis and MALDI Mass Spectrometry. Cancers (Basel) 2023; 15:1224. [PMID: 36831567 PMCID: PMC9954453 DOI: 10.3390/cancers15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Post-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers. Here, we evaluate the use of MALDI-mass spectrometry imaging (MSI) to visualize the location of O-GlcNAcylated proteins in tissue sections by mapping GlcNAc that has been released by the enzymatic hydrolysis of glycoproteins using an O-GlcNAc hydrolase. We use this strategy to monitor O-GlcNAc within hepatic VX2 tumor tissue. We show that increased O-GlcNAc is found within both viable tumor and tumor margin regions, implicating GlcNAc in tumor progression.
Collapse
Affiliation(s)
- Edwin E. Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Doud EH, Yeh ES. Mass Spectrometry-Based Glycoproteomic Workflows for Cancer Biomarker Discovery. Technol Cancer Res Treat 2023; 22:15330338221148811. [PMID: 36740994 PMCID: PMC9903044 DOI: 10.1177/15330338221148811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation has a clear role in cancer initiation and progression, with numerous studies identifying distinct glycan features or specific glycoproteoforms associated with cancer. Common findings include that aggressive cancers tend to have higher expression levels of enzymes that regulate glycosylation as well as glycoproteins with greater levels of complexity, increased branching, and enhanced chain length1. Research in cancer glycoproteomics over the last 50-plus years has mainly focused on technology development used to observe global changes in glycosylation. Efforts have also been made to connect glycans to their protein carriers as well as to delineate the role of these modifications in intracellular signaling and subsequent cell function. This review discusses currently available techniques utilizing mass spectrometry-based technologies used to study glycosylation and highlights areas for future advancement.
Collapse
Affiliation(s)
- Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
| | - Elizabeth S. Yeh
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
7
|
Sun MX, An HY, Sun YB, Sun YB, Bai B. LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma cells through miR-200a-3p/O-GlcNAc transferase pathway. J Orthop Surg Res 2022; 17:557. [PMID: 36544170 PMCID: PMC9773527 DOI: 10.1186/s13018-022-03449-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Osteosarcoma is highly malignant. The migration, invasion, and chemoresistance contribute to poor prognosis of osteosarcoma. Research reported that endogenous bornavirus-like nucleoprotein 3 pseudogene (EBLN3P) promotes the progression of osteosarcoma. METHODS In this study, the expression of EBLN3P in osteosarcoma tissue with different methotrexate (MTX) treatment responses was measured. Osteosarcoma cell lines with MTX resistance were constructed, and bioinformatic analysis was performed to explore the potential involved targets and pathways. RESULTS Higher EBLN3P was associated with MTX resistance. Downregulation of LncEBLN3P decreased the MTX resistance of osteosarcoma cells by sponging miR-200a-3p, an important microRNA that affects epithelial-mesenchymal transition (EMT). The decreased miR-200a-3p resulted in the upregulation of its target gene O-GlcNAc transferase (OGT), which in turn promoted the EMT process of osteosarcoma cells. Further analysis confirmed that the loss of OGT and over-expression of miR-200a-3p could partly abolish the MTX resistance induced by LncEBLN3P. CONCLUSION LncEBLN3P is upregulated in osteosarcoma and increases the MTX resistance in osteosarcoma cells through downregulating miR-200a-3p, which in turn promoted the EMT process of osteosarcoma cells by increasing the OGT.
Collapse
Affiliation(s)
- Ming-Xia Sun
- The Operation Room, Chengde Central Hospital, Hebei, China
| | - Hai-Yan An
- The Operation Room, Chengde Central Hospital, Hebei, China
| | - Yan-Bin Sun
- Department of Anesthesiology, Chengde Central Hospital, Hebei, China
| | - Yan-bao Sun
- Department of Orthopaedics, Chengde Central Hospital, No. 11 Guangren Street, Shuangqiao District, Chengde, 067000 Hebei China
| | - Bing Bai
- Department of Orthopaedics, Chengde Central Hospital, No. 11 Guangren Street, Shuangqiao District, Chengde, 067000 Hebei China
| |
Collapse
|
8
|
Wenzel DM, Olivier-Van Stichelen S. The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 2022; 50:1693-1702. [PMID: 36383066 PMCID: PMC10462390 DOI: 10.1042/bst20220539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Proper neuronal development is essential to growth and adult brain function. Alterations at any step of this highly organized sequence of events, due to genetic mutations or environmental factors, triggers brain malformations, which are leading causes of diseases including epilepsy, intellectual disabilities, and many others. The role of glycosylation in neuronal development has been emphasized for many years, notably in studying human congenital disorders of glycosylation (CDGs). These diseases highlight that genetic defects in glycosylation pathways are almost always associated with severe neurological abnormalities, suggesting that glycosylation plays an essential role in early brain development. Congenital disorders of O-GlcNAcylation are no exception, and all mutations of the O-GlcNAc transferase (OGT) are associated with X-linked intellectual disabilities (XLID). In addition, mouse models and in vitro mechanistic studies have reinforced the essential role of O-GlcNAcylation in neuronal development and signaling. In this review, we give an overview of the role of O-GlcNAcylation in this critical physiological process and emphasize the consequences of its dysregulation.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | | |
Collapse
|
9
|
Silva-Aguiar RP, Peruchetti DB, Pinheiro AAS, Caruso-Neves C, Dias WB. O-GlcNAcylation in Renal (Patho)Physiology. Int J Mol Sci 2022; 23:ijms231911260. [PMID: 36232558 PMCID: PMC9569498 DOI: 10.3390/ijms231911260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Wagner B. Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Correspondence:
| |
Collapse
|