1
|
Kandettu A, Ghosal J, Tharayil JS, Kuthethur R, Mallya S, Narasimhamurthy RK, Mumbrekar KD, Subbannayya Y, Kumar NA, Radhakrishnan R, Kabekkodu SP, Chakrabarty S. Inhibition of mitochondrial genome-encoded mitomiR-3 contributes to ZEB1 mediated GPX4 downregulation and pro-ferroptotic lipid metabolism to induce ferroptosis in breast cancer cells. Free Radic Biol Med 2025; 234:151-168. [PMID: 40239722 DOI: 10.1016/j.freeradbiomed.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, represents a unique vulnerability in cancer cells. However, current ferroptosis-inducing therapies face clinical limitations due to poor cancer cell specificity, systemic toxicity, and off-target effects. Therefore, a deeper understanding of molecular regulators of ferroptosis sensitivity is critical for developing targeted therapies. The metabolic plasticity of cancer cells determines their sensitivity to ferroptosis. While mitochondrial dysfunction contributes to metabolic reprogramming in cancer, its role in modulating ferroptosis remains poorly characterized. Previously, studies have identified that mitochondrial genome also encodes several non-coding RNAs. We identified 13 novel mitochondrial genome-encoded miRNAs (mitomiRs) that are aberrantly overexpressed in triple-negative breast cancer (TNBC) cell lines and patient tumors. We observed higher levels of mitomiRs in basal-like triple-negative breast cancer (TNBC) cells compared to mesenchymal stem-like TNBC cells. Strikingly, 11 of these mitomiRs directly target the 3'UTR of ZEB1, a master regulator of epithelial-to-mesenchymal transition (EMT). Using mitomiR-3 mimic, inhibitor and sponges, we demonstrated its role as a key regulator of ZEB1 expression in TNBC cells. Inhibition of mitomiR-3 via sponge construct in basal-like TNBC, MDA-MB-468 cells, promoted ZEB1 upregulation and induced a mesenchymal phenotype. Further, mitomiR-3 inhibition in TNBC cells contributed to reduced cancer cell proliferation, migration, and invasion. Mechanistically, mitomiR-3 inhibition in TNBC cells promote metabolic reprogramming toward pro-ferroptotic pathways, including iron accumulation, increased polyunsaturated fatty acid (PUFA) metabolites, and lipid peroxidation, contributing to ferroptotic cell death via ZEB1-mediated downregulation of GPX4, a critical ferroptosis defense enzyme. We observed that mitomiR-3 inhibition significantly suppressed tumor growth in vivo. Our identified mitomiR-3 has low expression in normal breast cells, minimizing potential off-target toxicity, making them a promising target for pro-ferroptotic cancer therapy. Our study reveals a novel link between mitochondrial miRNAs and ferroptosis sensitivity in TNBC paving a way for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Joydeep Ghosal
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naveena An Kumar
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, S10TTA, UK; Academic Unit of Oral Biology and Oral Pathology, Oman Dental College, Wattayah 116, Muscat, Oman
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
3
|
Jiang N, Kang J, Ding Y, Shataer M, Ma L, Tuersong T. MiR-509-3p promotes gastric cancer development by activating FOXM1-mediated p38/MK2 pathway. BIOMOLECULES & BIOMEDICINE 2024; 25:177-188. [PMID: 39319839 PMCID: PMC11647255 DOI: 10.17305/bb.2024.11104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Gastric cancer (GC), a malignant tumor, is highly prevalent, particularly in Asia. miR-509-3p plays a crucial role in regulating tumorigenesis, but its mechanism in GC remains unclear. Potential targets of miR-509-3p were identified through database analyses (miRWalk, TargetScan, ENCORI, and TCGA). The binding site between miR-509-3p and forkhead box protein M1 (FOXM1) was confirmed using a dual-luciferase assay. CCK-8, EdU, Transwell, wound healing assays, flow cytometry, and Western blot analysis were employed to examine changes in proliferation, migration, invasion, apoptosis, FOXM1, and the p38 MAPK (p38)/MAPK-activated protein kinase 2 (MK2) pathway in GC cells (MNK-45 and HGC-27) after miR-509-3p overexpression or knockdown, FOXM1 overexpression, and application of the p38 pathway agonist Anisomycin. The size and weight of subcutaneous xenografts were measured, and the effects of miR-509-3p overexpression were analyzed through histopathological staining (Tunel immunofluorescence, HE staining, Ki67, and FOXM1 immunohistochemistry). The results showed that overexpression of miR-509-3p suppressed proliferation, migration, and invasion, while accelerating apoptosis. Knockdown of miR-509-3p promoted malignant progression. miR-509-3p inhibited GC by regulating FOXM1-mediated p38/MK2 pathway activation, and miR-509-3p mimics restrained tumor growth in vivo through this pathway. In conclusion, miR-509-3p suppresses GC malignant progression by regulating FOXM1-mediated p38/MK2 pathway activation.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Clinical Medicine, Xinjiang Medical University, Ürümqi, China
| | - Jiawei Kang
- Department of Clinical Medicine, Xinjiang Medical University, Ürümqi, China
| | - Yi Ding
- Department of Histology and Embryology, Basic Medical College of Xinjiang Medical University, Ürümqi, China
| | - Munire Shataer
- Department of Histology and Embryology, Basic Medical College of Xinjiang Medical University, Ürümqi, China
| | - Liangying Ma
- Department of Pharmacy, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Tayier Tuersong
- Department of Pharmacy, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
4
|
Mo C, You W, Rao Y, Lin Z, Wang S, He T, Shen H, Li X, Zhang R, Li B. Epigenetic regulation of DNA repair gene program by Hippo/YAP1-TET1 axis mediates sorafenib resistance in HCC. Cell Mol Life Sci 2024; 81:284. [PMID: 38967794 PMCID: PMC11335208 DOI: 10.1007/s00018-024-05296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA Repair/drug effects
- DNA Repair/genetics
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Signal Transduction/drug effects
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
- The First Affiliated Hospital , of Xiamen University, Xiamen, 361100, Fujian, China
| | - Weixin You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Yipeng Rao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Zhenping Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
- The First Affiliated Hospital , of Xiamen University, Xiamen, 361100, Fujian, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China.
| |
Collapse
|
5
|
Dong J, Chen J, Wu Y, Yan J. GTSE1 promotes nasopharyngeal carcinoma proliferation and angiogenesis by upregulating STMN1. Cell Div 2024; 19:16. [PMID: 38698443 PMCID: PMC11064356 DOI: 10.1186/s13008-024-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor survival rate. G2 and S phase-expressed-1 (GTSE1) takes part in the progression of diverse tumors as an oncogene, but its role and potential mechanism in NPC remain unknown. METHODS The GTSE1 expression was analyzed by western blot in NPC tissues and cells. Knock-down experiments were conducted to determine the function of GTSE1 in NPC by cell counting kit-8, the 5-ethynyl-2'-deoxyuridine (EdU) incorporation experiment, cell scratch wound-healing experiment, transwell assays, tube forming experiment and western blot. In addition, the in vivo role of GTSE1 was addressed in tumor-bearing mice. RESULTS The expression of was increased in NPC. Silencing of GTSE1 suppressed cell viability, the percent of EdU positive cells, and the number of invasion cells and tubes, but enhanced the scratch ratio in NPC cells. Mechanically, downregulation of GTSE1 decreased the expressions of FOXM1 and STMN1, which were restored with the upregulation of FOXM1. Increased expression of STMN1 reversed the effects of the GTSE1 silencing on proliferation, migration, invasion and angiogenesis of NPC cells. Furthermore, knockdown of GTSE1 repressed the tumor volume and tumor weight of xenografted mice. CONCLUSION GTSE1 was highly expressed in NPC, and silencing of GTSE1 ameliorated the malignant processes of NPC cells by upregulating STMN1, suggesting a possible therapeutical target for NPC.
Collapse
Affiliation(s)
- Jiadi Dong
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| | - Jingjing Chen
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China.
| | - Yidong Wu
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| | - Jiangyu Yan
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| |
Collapse
|
6
|
Akshaya RL, Saranya I, Salomi GM, Shanthi P, Ilangovan R, Venkataraman P, Selvamurugan N. In vivo validation of the functional role of MicroRNA-4638-3p in breast cancer bone metastasis. J Cancer Res Clin Oncol 2024; 150:63. [PMID: 38300343 PMCID: PMC10834561 DOI: 10.1007/s00432-023-05601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Skeletal metastases are increasingly reported in metastatic triple-negative breast cancer (BC) patients. We previously reported that TGF-β1 sustains activating transcription factor 3(ATF3) expression and is required for cell proliferation, invasion, and bone metastasis genes. Increasing studies suggest the critical regulatory function of microRNAs (miRNAs) in governing BC pathogenesis. TGF-β1 downregulated the expression of miR-4638-3p, which targets ATF3 in human BC cells (MDA-MB-231). In the present study, we aimed to identify the functional role of miR-4638-3p in BC bone metastasis by the caudal artery injection of the MDA-MB-231 cells overexpressing mir-4638 in the mice. METHODS MDA-MB-231 cells overexpressing miR-4638 were prepared by stable transfections. Reverse transcriptase quantitative PCR was carried out to determine the expression of endogenous miR-4638-3p and bone resorption marker genes. X-ray, micro-CT, and Hematoxylin & Eosin studies were used to determine osteolytic lesions, trabecular structure, bone mineral density, and micrometastasis of cells. RESULTS The mice injected with MDA-MB-231 cells overexpressing miR-4638-3p decreased the expression of bone resorption marker genes, compared to MDA-MB-231 cells injection. Reduced osteolytic lesions and restored bone density by MDA-MB-231 cells overexpressing miR-4638-3p were observed. Similarly, the mice injected with MDA-MB-231 cells overexpressing miR-4638-3p showed a better microarchitecture of the trabecular network. A few abnormal cells seen in the femur of MDA-MB-231 cells-injected mice were not found in MDA-MB-231 cells overexpressing miR-4638. CONCLUSION The identified functional role of ATF3 targeting miR-4638-3p in BC bone metastasis in vivo suggests its candidature as BC therapeutics in the future.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - G Margaret Salomi
- SRM-DBT Platform, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - P Shanthi
- Department of Pathology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | - R Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | - P Venkataraman
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
7
|
Rochín-Hernández LJ, Rochín-Hernández LS, Padilla-Cristerna ML, Duarte-García A, Jiménez-Acosta MA, Figueroa-Corona MP, Meraz-Ríos MA. Mesenchymal Stem Cells from Familial Alzheimer's Patients Express MicroRNA Differently. Int J Mol Sci 2024; 25:1580. [PMID: 38338859 PMCID: PMC10855944 DOI: 10.3390/ijms25031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the predominant form of dementia globally. No reliable diagnostic, predictive techniques, or curative interventions are available. MicroRNAs (miRNAs) are vital to controlling gene expression, making them valuable biomarkers for diagnosis and prognosis. This study examines the transcriptome of olfactory ecto-mesenchymal stem cells (MSCs) derived from individuals with the PSEN1(A431E) mutation (Jalisco mutation). The aim is to determine whether this mutation affects the transcriptome and expression profile of miRNAs and their target genes at different stages of asymptomatic, presymptomatic, and symptomatic conditions. Expression microarrays compare the MSCs from mutation carriers with those from healthy donors. The results indicate a distinct variation in the expression of miRNAs and mRNAs among different symptomatologic groups and between individuals with the mutation. Using bioinformatics tools allows us to identify target genes for miRNAs, which in turn affect various biological processes and pathways. These include the cell cycle, senescence, transcription, and pathways involved in regulating the pluripotency of stem cells. These processes are closely linked to inter- and intracellular communication, vital for cellular functioning. These findings can enhance our comprehension and monitoring of the disease's physiological processes, identify new disorder indicators, and develop innovative treatments and diagnostic tools for preventing or treating AD.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Lory S. Rochín-Hernández
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mayte L. Padilla-Cristerna
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Andrea Duarte-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - María P. Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| |
Collapse
|