1
|
Yuan X, Ni H, Shi F, Huang YB, Hou Y, Hu SQ. The anti-aging and anti-Alzheimer's disease potential of kinsenoside prepared from Anoectochilus roxburghii. Fitoterapia 2025; 182:106441. [PMID: 39938659 DOI: 10.1016/j.fitote.2025.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Anoectochilus roxburghii is a high-value plant resource for nutraceutical efficacy and medicinal applications, among which kinsenoside is recognized as the main bioactive glycoside. However, the anti-aging and anti-Alzheimer's disease (AD) activities of kinsenoside have long been neglected. The objective of this study was to investigate the influences of kinsenoside on aging and amyloid-β (Aβ) proteotoxicity and underlying molecular mechanisms in Caenorhabditis elegans (C. elegans). Kinsenoside (50 μM) could significantly prolong the mean lifespan of C. elegans by 26.3 %. Moreover, it improved the physiological functions, stress resistance and in vivo antioxidant activities of C. elegans. Further studies indicated that kinsenoside upregulated the mRNA expression levels of aging-associated genes including sir-2.1, hsp-16.2, sek-1, skn-1, sod-3, hsf-1, gst-4. The genetic studies and molecular docking studies supported that SKN-1 and HSF-1 transcription factors were requirements for the kinsenoside-mediated longevity. Furthermore, kinsenoside could exert a protective effect on Aβ-induced proteotoxicity by regulating stress-responsive and autophagy-related genes in C. elegans CL4176. The results sheds light on the bioactive properties and pharmaceutical potential of kinsenoside including anti-aging and anti-AD, broadening the prospects of kinsenoside for industrial applications.
Collapse
Affiliation(s)
- Xin Yuan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510640, China
| | - Fan Shi
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Yan-Bo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Song-Qing Hu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China.
| |
Collapse
|
2
|
Chen YF, Qi RQ, Zhao L, Liang LR, Song JW, Zhou XY, Chen YH, Wang SY, Wang Q, Liu Y, Dong Y, Liu XY, Li J, Zhong JC. Aprocitentan mitigates doxorubicin-induced cardiotoxicity by inhibiting cuproptosis, oxidative stress, and mitochondrial impairments via the activation of sirtuin 7. Int Immunopharmacol 2025; 148:114141. [PMID: 39930646 DOI: 10.1016/j.intimp.2025.114141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 05/08/2025]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug for cancer while leads to several cardiac disorders including cardiomyopathy and heart failure. Aprocitentan is a novel dual endothelin-1 receptor antagonist and functions as an effective antihypertensive drug for resistant hypertension. However, the exact roles of aprocitentan in DOX-induced cardiotoxicity remains largely unclear.In this work, we explored potential participants of aprocitentan in DOX-induced cardiotoxicity. Mice were treated with DOX to induce cardiotoxicity, and then received either aprocitentan or tetrathiomolybdate interventions respectively. Compared with controls, DOX-treated mice exhibited cardiac impairments and dysfunction. Notably, aprocitentan or tetrathiomolybdate intervention remarkably mitigated DOX-mediated cardiac cardiotoxicity, as evidenced by alleviated myocardial fibrosis and improved cardiac function. Furthermore, aprocitentan or tetrathiomolybdate administration significantly mitigated myocardial cuproptosis, oxidative stress, cardiac aging and inflammation in DOX-treated mice with decreased levels of DLAT accumulation, as well as downregulated expressions of HSP70, P16 and P21, respectively. In cultured primary rat cardiomyocytes, treatment with aprocitentan alleviated DOX-induced augmentation of cuproptosis and oxidative stress with reduced DLAT accumulation. Moreover, aprocitentan administration strikingly reversed DOX-induced and elesclomol-aggravated cellular senescence and mitochondrial injury in cardiomyocytes. More importantly, knock-down of sirtuin 7 (SIRT7) by SIRT7 siRNA blocked the beneficial effects of aprocitentan on DOX-associated cuproptosis, oxidative stress, mitochondrial injury, and senescence in cardiomyocytes. In summary, aprocitentan exerts as a novel therapeutic agent for alleviation of DOX-induced cardiotoxicity through the inhibition of cuproptosis, oxidative stress, cardiac aging and mitochondrial injuries via the activation of SIRT7, offering new possibilities for prevention and treatment of DOX-induced cardiac disorders.
Collapse
Affiliation(s)
- Yu-Fei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Rui-Qiang Qi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Lin Zhao
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Li-Rong Liang
- Medical Research Center, Beijing Chaoyang Hospital and Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020 China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Xin-Yu Zhou
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Si-Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Qi Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University. Beijing 100020 China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020 China.
| |
Collapse
|
3
|
Liu Z, Gan Y, Shen Z, Cai S, Wang X, Li Y, Li X, Fu H, Chen J, Li N. Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies. Front Pharmacol 2025; 15:1527901. [PMID: 39850564 PMCID: PMC11754225 DOI: 10.3389/fphar.2024.1527901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF. Notably, copper dyshomeostasis was associated with the occurrence of HF. Hence, this review aimed to investigate the biological processes involved in copper uptake, transport, excretion, and storage at both the cellular and systemic levels in terms of cuproptosis and HF, along with the underlying mechanisms of action. Additionally, the role of cuproptosis and its related mitochondrial dysfunction in HF pathogenesis was analyzed. Finally, we reviewed the therapeutic potential of current drugs that target copper metabolism for treating HF. Overall, the conclusions of this review revealed the therapeutic potential of copper-based therapies that target cuproptosis for the development of strategies for the treatment of HF.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhen Shen
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Siqi Cai
- College of Art, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Xizhen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Chen YF, Qi RQ, Song JW, Wang SY, Dong ZJ, Chen YH, Liu Y, Zhou XY, Li J, Liu XY, Zhong JC. Sirtuin 7 ameliorates cuproptosis, myocardial remodeling and heart dysfunction in hypertension through the modulation of YAP/ATP7A signaling. Apoptosis 2024; 29:2161-2182. [PMID: 39394530 DOI: 10.1007/s10495-024-02021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
Myocardial fibrosis is a typical pathological manifestation of hypertension. However, the exact role of sirtuin 7 (SIRT7) in myocardial remodeling remains largely unclear. Here, spontaneously hypertensive rats (SHRs) and angiotensin (Ang) II-induced hypertensive mice were pretreated with recombinant adeno-associated virus (rAAV)-SIRT7, copper chelator tetrathiomolybdate (TTM) or copper ionophore elesclomol, respectively. Compared with normotensive controls, reduced SIRT7 expression and augmented cuproptosis were observed in hearts of hypertensive rats and mice with decreased FDX1 levels and increased HSP70 levels. Notably, intervention with rAAV-SIRT7 and TTM strikingly prevented DLAT oligomers aggregation, and elevated ATP7A and TOM20 expressions, contributing to the alleviation of cuproptosis, mitochondrial injury, myocardial remodeling and heart dysfunction in spontaneously hypertensive rats and Ang II-induced hypertensive mice. In cultured rat primary cardiac fibroblasts (CFs), rhSIRT7 alleviated CuCl2, Ang II or elesclomol-induced cuproptosis and fibroblast activation by blunting DLAT oligomers accumulation and downregulating α-SMA expression. Additionally, conditioned medium from rhSIRT7-pretreated CFs remarkably mitigated cellular hypertrophy and mitochondrial impairments of neonatal rat cardiomyocytes, as well as cell migration and polarization of RAW 264.7 macrophages. Importantly, verteporfin reduced CuCl2-induced cuproptosis, mitochondrial injury and fibrotic activation in CFs. Knockdown of ATP7A with si-ATP7A blocked cellular protective effects of rhSIRT7 and verteporfin in CFs. In conclusion, SIRT7 attenuates cuproptosis, myocardial fibrosis and heart dysfunction in hypertension through the modulation of YAP/ATP7A signaling. Targeting SIRT7 is of vital importance for developing therapeutic strategies in hypertension and hypertensive heart disorders.
Collapse
Affiliation(s)
- Yu-Fei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Rui-Qiang Qi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Si-Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhao-Jie Dong
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Yu Zhou
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
5
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
6
|
Lin Y, Chen K, Guo J, Chen P, Qian ZR, Zhang T. Identification of cuproptosis-related genes and immune infiltration in dilated cardiomyopathy. Int J Cardiol 2024; 399:131702. [PMID: 38168558 DOI: 10.1016/j.ijcard.2023.131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a leading cause of heart failure. Cuproptosis is involved in various diseases, although its role in DCM is still unclear. Here, this study aims to investigate the feasibility of using genes related to cuproptosis as diagnostic biomarkers for DCM and the association of their expression with immune infiltration and drug target in cardiac tissue. METHODS Gene expression data from nonfailure (NF) and DCM samples were retrieved from the GEO database. Cuproptosis scores were calculated using single-sample gene set enrichment analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) was used to screen key modules associated with DCM and cuproptosis. Random forest and least absolute shrinkage and selection operator (LASSO) were applied to identify signature genes. Finally, immune cell infiltration was assessed using ssGSEA. mRNA-miRNA-lncRNA regulatory networks and chemical-drug regulatory networks based on signature genes were analyzed by Cytoscape. RESULTS 8 modules were aggregated by WGCNA, among which MEblue was significantly associated with cuproptosis scores and DCM. A diagnostic model made up of six signature genes including SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1 was selected. Furthermore, immune infiltration studies showed significant differences between DCM and NF. Drugs networks and ceRNA regulatory network based on six signature genes were successfully constructed. CONCLUSION Six signature genes (SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1) were identified as novel diagnostic biomarkers in DCM. In addition, the expression of these genes was associated with immune cell infiltration, suggesting that cuproptosis may be involved in the immune regulation of DCM.
Collapse
Affiliation(s)
- Yixuan Lin
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Kaicong Chen
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhua Guo
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Pengxiao Chen
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Zhi Rong Qian
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Tong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| |
Collapse
|
7
|
Cai L, Tan Y, Holland B, Wintergerst K. Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death. Cardiovasc Toxicol 2024; 24:71-84. [PMID: 38321349 PMCID: PMC11517829 DOI: 10.1007/s12012-024-09836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Cardiac myocyte death is an essential initiator of the pathogenesis and progression of various etiological cardiomyopathies, including diabetic cardiomyopathy (DCM), a disease that has been reported since 1972. Cardiac cell death has been detected in the hearts of patients with diabetes and in animal models, and the role of cell death in the pathogenesis of DCM has been extensively investigated. The first review by the authors, specifically focusing on "Cell death and diabetic cardiomyopathy," was published in the journal, Cardiovascular Toxicology in 2003. Over the past two decades, studies investigating the role of cardiac cell death in the pathogenesis of DCM have gained significant attention, resulting in the discovery of several new kinds of cell death involving different mechanisms, including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. After the 20th anniversary of the review published in 2003, we now provide an update with a focus on the potential role of metal-mediated cell death, ferroptosis, and cuproptosis in the development of DCM in compliance with this special issue. The intent of our review is to further stimulate work in the field to advance the body of knowledge and continue to drive efforts to develop more advanced therapeutic approaches to prevent cell death, particularly metal-dependent cell death, and, ultimately, to reduce or prevent the development of DCM.
Collapse
Affiliation(s)
- Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA.
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA.
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brian Holland
- Division of Cardiology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kupper Wintergerst
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|