1
|
Sanabria-de la Torre R, Montero-Vílchez T, García-Gavín J, Arias-Santiago S. Current Insights on Lipidomics in Dermatology: A Systematic Review. J Invest Dermatol 2025; 145:1105-1116.e6. [PMID: 39303909 DOI: 10.1016/j.jid.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Inflammatory dermatoses and lipid disturbances are interrelated, especially owing to chronic inflammatory conditions. This study aimed to investigate recent findings about lipidomic and dermatologic diseases as well as on the sampling techniques developed to study lipidomics in vivo and analytical and statistical approaches employed. A systematic review was designed using the search algorithm (lipidomics) AND (skin OR dermatology OR stratum corneum OR sebum OR epidermis), following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search identified 1013 references, and finally, only 48 were selected, including a total of 2651 participants with a mean age of 34.13 ± 16.28 years. The dermatologic diseases evaluated were atopic dermatitis, acne, psoriasis, hidradenitis suppurativa, and other skin diseases. Sebutape was the primary sampling technique for lipidomics research. Most of the studies performed untargeted profiling through liquid chromatography with tandem mass spectrometry statistically analyzed with principal component analysis, orthogonal partial least-squares discriminate analysis, heatmap, and volcano plot models. The most consulted databases were LIPIDMAPS Structure Database, MetaboAnalyst, and Human Metabolome Database. A large heterogeneity of lipidomic and lipid metabolism profiles was observed in patients with skin diseases. Skin lipidomic analysis is valuable in exploring skin disease and has ample translational potential.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain.
| | | | - Salvador Arias-Santiago
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain; Dermatology Department, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Yu X, Lei S, Shen Y, Liu T, Li J, Wang J, Su Z. Cholesterol Sulfate: Pathophysiological Implications and Potential Therapeutics. Biomolecules 2025; 15:646. [PMID: 40427539 PMCID: PMC12109244 DOI: 10.3390/biom15050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Cholesterol sulfate (CS) is a naturally occurring cholesterol derivative that is widely distributed across various tissues and body fluids. In humans, its biosynthesis is primarily mediated by the sulfotransferase (SULT) 2B1b (SULT2B1b). Over the years, CS has been found to play critical roles in various physiological processes, including epidermal cell adhesion, sperm capacitation, platelet adhesion, coagulation, glucolipid metabolism, bone metabolism, gut microbiota metabolism, neurosteroid biosynthesis, T-cell receptor signaling, and immune cell migration. In this review, we first introduce the endogenous regulation of CS biosynthesis and metabolism. We then highlight current advances in the understanding of the physiological roles of CS. Finally, we delve into the implications of CS in various diseases, with a particular focus on its mechanism of action and potential therapeutic applications. A comprehensive understanding of CS's physiological function, biosynthesis regulation, and role as a disease modifier offers novel insights that could pave the way for innovative therapeutic strategies targeting a wide range of conditions.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Center for High Altitude Medicine and Department of Pain Management, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu 610041, China; (X.Y.)
| | - Siman Lei
- Center for High Altitude Medicine and Department of Pain Management, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu 610041, China; (X.Y.)
| | - Ying Shen
- Center for High Altitude Medicine and Department of Pain Management, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu 610041, China; (X.Y.)
| | - Tao Liu
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- Center for High Altitude Medicine and Department of Pain Management, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu 610041, China; (X.Y.)
| | - Jia Wang
- Center for High Altitude Medicine and Department of Pain Management, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu 610041, China; (X.Y.)
| | - Zhiguang Su
- Center for High Altitude Medicine and Department of Pain Management, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu 610041, China; (X.Y.)
| |
Collapse
|
3
|
Kwon TU, Kwon YJ, Park H, Kang YJ, Chun YJ. Dysregulation of STS in keratinocytes promotes calcium signaling and differentiation. Sci Rep 2025; 15:662. [PMID: 40118897 PMCID: PMC11928595 DOI: 10.1038/s41598-024-84701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/26/2024] [Indexed: 03/24/2025] Open
Abstract
Steroid sulfatase (STS) is a key enzyme for the desulfation of steroid sulfates, converting them into their biologically active forms. Notably, X-linked ichthyosis (XLI), a genetic disorder characterized by hyperkeratinization, arises as a direct result of STS deficiency. Keratinocyte differentiation is essential for proper keratinization. In this study, gene ontology analysis from STS-deficient mice revealed enhanced differentiation and upregulation of calcium-related signaling. Calcium plays a key role in regulating keratinocyte differentiation, with STS-deficient cells showing a marked increase in intracellular calcium influx. Additionally, these cells significantly upregulated calcium-sensing receptors (CasR), leading to elevated tyrosine phosphorylation, increased differentiation signaling, and the upregulation of early differentiation markers, including keratin 1 and keratin 10, as seen in HaCaT cells and mouse primary keratinocytes. Furthermore, STS inhibitors enhanced the expression of E-cadherin and terminal differentiation markers such as involucrin and loricrin. Due to increased calcium sensitivity, STS-deficient cells treated with calcium exhibited a significant upregulation of differentiation markers and reduced sensitivity to calcium chelation. Collectively, our findings demonstrate that reduced STS expression and inhibition of its activity enhance calcium responsiveness, induce CasR expression, and amplify calcium signaling, thereby promoting keratinocyte differentiation. These findings offer valuable insights into the mechanisms underlying STS deficiency-induced hyperkeratinization.
Collapse
Affiliation(s)
- Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyemin Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoon-Ji Kang
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Zhou B, Liang C, Li P, Xiao H. Revisiting X-linked congenital ichthyosis. Int J Dermatol 2025; 64:51-61. [PMID: 39086014 DOI: 10.1111/ijd.17396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
X-linked recessive ichthyosis (XLI) is a hereditary skin disease characterized by generalized dryness and scaling of the skin, with frequent extracutaneous manifestations. It is the second most common type of ichthyosis, with a prevalence of 1/6,000 to 1/2,000 in males and without any racial or geographical differences. The causative gene for XLI is the steroid sulfatase gene (STS), located on Xp22.3. STS deficiency causes an abnormal cholesterol sulfate (CS) accumulation in the stratum corneum (SC). Excess CS induces epidermal permeability barrier dysfunction and scaling abnormalities. This review summarizes XLI's genetic, clinical, and pathological features, pathogenesis, diagnosis and differential diagnoses, and therapeutic perspectives. Further understanding the role of the STS gene pathogenic variants in XLI may contribute to a more accurate and efficient clinical diagnosis of XLI and provide novel strategies for its treatment and prenatal diagnosis.
Collapse
Affiliation(s)
- Baishun Zhou
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Cancan Liang
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Peiyao Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Heng Xiao
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
5
|
Wren GH, Davies W. Cardiac arrhythmia in individuals with steroid sulfatase deficiency (X-linked ichthyosis): candidate anatomical and biochemical pathways. Essays Biochem 2024; 68:423-429. [PMID: 38571328 PMCID: PMC11625857 DOI: 10.1042/ebc20230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Circulating steroids, including sex hormones, can affect cardiac development and function. In mammals, steroid sulfatase (STS) is the enzyme solely responsible for cleaving sulfate groups from various steroid molecules, thereby altering their activity and water solubility. Recent studies have indicated that Xp22.31 genetic deletions encompassing STS (associated with the rare dermatological condition X-linked ichthyosis), and common variants within the STS gene, are associated with a markedly elevated risk of cardiac arrhythmias, notably atrial fibrillation/flutter. Here, we consider emerging basic science and clinical findings which implicate structural heart abnormalities (notably septal defects) as a mediator of this heightened risk, and propose candidate cellular and biochemical mechanisms. Finally, we consider how the biological link between STS activity and heart structure/function might be investigated further and the clinical implications of work in this area.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, U.K
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, U.K
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, U.K
| |
Collapse
|
6
|
Wren GH, Flanagan J, Underwood JFG, Thompson AR, Humby T, Davies W. Memory, mood and associated neuroanatomy in individuals with steroid sulphatase deficiency (X-linked ichthyosis). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12893. [PMID: 38704684 PMCID: PMC11070068 DOI: 10.1111/gbb.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
Steroid sulphatase (STS) cleaves sulphate groups from steroid hormones, and steroid (sulphate) levels correlate with mood and age-related cognitive decline. In animals, STS inhibition or deletion of the associated gene, enhances memory/neuroprotection and alters hippocampal neurochemistry. Little is known about the consequences of constitutive STS deficiency on memory-related processes in humans. We investigated self-reported memory performance (Multifactorial Memory Questionnaire), word-picture recall and recent mood (Kessler Psychological Distress Scale, K10) in adult males with STS deficiency diagnosed with the dermatological condition X-linked ichthyosis (XLI; n = 41) and in adult female carriers of XLI-associated genetic variants (n = 79); we compared results to those obtained from matched control subjects [diagnosed with ichthyosis vulgaris (IV, n = 98) or recruited from the general population (n = 250)]. Using the UK Biobank, we compared mood/memory-related neuroanatomy in carriers of genetic deletions encompassing STS (n = 28) and non-carriers (n = 34,522). We found poorer word-picture recall and lower perceived memory abilities in males with XLI and female carriers compared with control groups. XLI-associated variant carriers and individuals with IV reported more adverse mood symptoms, reduced memory contentment and greater use of memory aids, compared with general population controls. Mood and memory findings appeared largely independent. Neuroanatomical analysis only indicated a nominally-significantly larger molecular layer in the right hippocampal body of deletion carriers relative to non-carriers. In humans, constitutive STS deficiency appears associated with mood-independent impairments in memory but not with large effects on underlying brain structure; the mediating psychobiological mechanisms might be explored further in individuals with XLI and in new mammalian models lacking STS developmentally.
Collapse
Affiliation(s)
| | - Jessica Flanagan
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Jack F. G. Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| | - Andrew R. Thompson
- School of PsychologyCardiff UniversityCardiffUK
- South Wales Clinical Psychology Doctoral ProgrammeCardiff and Vale University Health BoardCardiffUK
| | | | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
7
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Flori E, Cavallo A, Mosca S, Kovacs D, Cota C, Zaccarini M, Di Nardo A, Bottillo G, Maiellaro M, Camera E, Cardinali G. JAK/STAT Inhibition Normalizes Lipid Composition in 3D Human Epidermal Equivalents Challenged with Th2 Cytokines. Cells 2024; 13:760. [PMID: 38727296 PMCID: PMC11083560 DOI: 10.3390/cells13090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Alessia Cavallo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| |
Collapse
|