1
|
Ozturk G, Hari E, Yildirim K, Bayram A, Yildirim Z, Demiralp T, Gurvit H. Prospective memory performance and its resting-state functional connectivity correlates in individuals with memory complaints. Neuropsychologia 2025; 208:109082. [PMID: 39855424 DOI: 10.1016/j.neuropsychologia.2025.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to investigate prospective memory (PM) in patients with memory complaints but without dementia (PWD) and correlate findings with resting-state functional connectivity (rsFC) alterations. We hypothesized that PM impairment would be evident at a certain relatively early point in the continuum and specific rsFC patterns would be the neuroimaging signature of this impairment. Sixty PWD participated in the study. The Memory Screening Test for Intentions and the Virtual Week were used to assess PM. Using the participants' PM scores as a regressor, the rsFC for PM was analyzed by Network-Based Statistics (NBS). Participants were divided into high and low PM groups (HPMG, LPMG) according to their PM scores and then their neuropsychological scores, rsFC patterns, and CSF biomarker levels were compared. The effect of education on the relationship between connectivity and CSF Aβ42 level was examined by moderation analysis. Compared with HPMG, LPMG was impaired in both event- and time-based PM tasks, but the difference was more distinct in the event-based ones. While HPMG was more successful in event-based tasks than time-based ones, LPMG was not. As a result of NBS analysis, the middle frontal gyrus (MFG), supramarginal gyrus (SMG), and anterior cingulate cortex (ACC) were determined as central seeds. The HPMG's performance and connectivity were higher for most comparisons but had lower CSF Aβ42 than LPMG and therefore was closer to the positivity threshold. When the education level was at the mean and above, there was a negative correlation between CSF Aβ42 level and overall connectivity. The connectivities of MFG, SMG, and ACC play an important role in PM performance in the PWD. In more advanced PM impairment, the impairment of spontaneous processes is more prominent. At the onset of amyloidosis, the cognitive reserve may compensate for cognitive impairment by increasing connectivity.
Collapse
Affiliation(s)
- Gulcan Ozturk
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey.
| | - Emre Hari
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Kardelen Yildirim
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Zerrin Yildirim
- Department of Neurology, Bagcilar Training and Research Hospital, University of Health Sciences, 34200, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Hakan Gurvit
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
2
|
Andrade K, Pacella V. The unique role of anosognosia in the clinical progression of Alzheimer's disease: a disorder-network perspective. Commun Biol 2024; 7:1384. [PMID: 39448784 PMCID: PMC11502706 DOI: 10.1038/s42003-024-07076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Alzheimer's disease (AD) encompasses a long continuum from a preclinical phase, characterized by neuropathological alterations albeit normal cognition, to a symptomatic phase, marked by its clinical manifestations. Yet, the neural mechanisms responsible for cognitive decline in AD patients remain poorly understood. Here, we posit that anosognosia, emerging from an error-monitoring failure due to early amyloid-β deposits in the posterior cingulate cortex, plays a causal role in the clinical progression of AD by preventing patients from being aware of their deficits and implementing strategies to cope with their difficulties, thus fostering a vicious circle of cognitive decline.
Collapse
Affiliation(s)
- Katia Andrade
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, Pitié-Salpêtrière Hospital, 75013, Paris, France.
- FrontLab, Paris Brain Institute (Institut du Cerveau, ICM), AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France.
| | - Valentina Pacella
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia, 27100, Italy
- Brain Connectivity and Behaviour Laboratory, Paris, France
| |
Collapse
|
3
|
Elberse JD, Saberi A, Ahmadi R, Changizi M, Bi H, Hoffstaedter F, Mander BA, Eickhoff SB, Tahmasian M, Alzheimer’s Disease Neuroimaging Initiative. The interplay between insomnia symptoms and Alzheimer's disease across three main brain networks. Sleep 2024; 47:zsae145. [PMID: 38934787 PMCID: PMC11467060 DOI: 10.1093/sleep/zsae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
STUDY OBJECTIVES Insomnia symptoms are prevalent along the trajectory of Alzheimer's disease (AD), but the neurobiological underpinning of their interaction is poorly understood. Here, we assessed structural and functional brain measures within and between the default mode network (DMN), salience network, and central executive network (CEN). METHODS We selected 320 participants from the ADNI database and divided them by their diagnosis: cognitively normal (CN), Mild Cognitive Impairment (MCI), and AD, with and without self-reported insomnia symptoms. We measured the gray matter volume (GMV), structural covariance (SC), degrees centrality (DC), and functional connectivity (FC), testing the effect and interaction of insomnia symptoms and diagnosis on each index. Subsequently, we performed a within-group linear regression across each network and ROI. Finally, we correlated observed abnormalities with changes in cognitive and affective scores. RESULTS Insomnia symptoms were associated with FC alterations across all groups. The AD group also demonstrated an interaction between insomnia and diagnosis. Within-group analyses revealed that in CN and MCI, insomnia symptoms were characterized by within-network hyperconnectivity, while in AD, within- and between-network hypoconnectivity was ubiquitous. SC and GMV alterations were nonsignificant in the presence of insomnia symptoms, and DC indices only showed network-level alterations in the CEN of AD individuals. Abnormal FC within and between DMN and CEN hubs was additionally associated with reduced cognitive function across all groups, and increased depressive symptoms in AD. CONCLUSIONS We conclude that patients with clinical AD present with a unique pattern of insomnia-related functional alterations, highlighting the profound interaction between both conditions.
Collapse
Affiliation(s)
- Jorik D Elberse
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Reihaneh Ahmadi
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Faculty of Medicine, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Monir Changizi
- Department of Neurological Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanwen Bi
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
| | | |
Collapse
|
4
|
Marin-Marin L, Miró-Padilla A, Costumero V. Structural But Not Functional Connectivity Differences within Default Mode Network Indicate Conversion to Dementia. J Alzheimers Dis 2023; 91:1483-1494. [PMID: 36641666 DOI: 10.3233/jad-220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Malfunctioning of the default mode network (DMN) has been consistently related to mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, evidence on differences in this network between MCI converters (MCI-c) and non-converters (MCI-nc), which could mark progression to AD, is still inconsistent. OBJECTIVE To multimodally investigate the DMN in the AD continuum. METHODS We measured gray matter (GM) volume, white matter (WM) integrity, and functional connectivity (FC) at rest in healthy elderly controls, MCI-c, MCI-nc, and AD patients, matched on sociodemographic variables. RESULTS Significant differences between AD patients and controls were found in the structure of most of the regions of the DMN. MCI-c only differed from MCI-nc in GM volume of the left parahippocampus and bilateral hippocampi and middle frontal gyri, as well as in WM integrity of the parahippocampal cingulum connecting the left hippocampus and precuneus. We found significant correlations between integrity in some of those regions and global neuropsychological status, as well as an excellent discrimination ability between converters and non-converters for the sum of GM volume of left parahippocampus, bilateral hippocampi, and middle frontal gyri, and WM integrity of left parahippocampal cingulum. However, we found no significant differences in FC. CONCLUSION These results further support the relationship between abnormalities in the DMN and AD, and suggest that structural measures could be more accurate than resting-state estimates as markers of conversion from MCI to AD.
Collapse
Affiliation(s)
- Lidón Marin-Marin
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| | - Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| | - Víctor Costumero
- Neuropsychology and Functional Neuroimaging Group, Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| |
Collapse
|
5
|
Penalba-Sánchez L, Oliveira-Silva P, Sumich AL, Cifre I. Increased functional connectivity patterns in mild Alzheimer's disease: A rsfMRI study. Front Aging Neurosci 2023; 14:1037347. [PMID: 36698861 PMCID: PMC9869068 DOI: 10.3389/fnagi.2022.1037347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. In view of our rapidly aging population, there is an urgent need to identify Alzheimer's disease (AD) at an early stage. A potential way to do so is by assessing the functional connectivity (FC), i.e., the statistical dependency between two or more brain regions, through novel analysis techniques. Methods In the present study, we assessed the static and dynamic FC using different approaches. A resting state (rs)fMRI dataset from the Alzheimer's disease neuroimaging initiative (ADNI) was used (n = 128). The blood-oxygen-level-dependent (BOLD) signals from 116 regions of 4 groups of participants, i.e., healthy controls (HC; n = 35), early mild cognitive impairment (EMCI; n = 29), late mild cognitive impairment (LMCI; n = 30), and Alzheimer's disease (AD; n = 34) were extracted and analyzed. FC and dynamic FC were extracted using Pearson's correlation, sliding-windows correlation analysis (SWA), and the point process analysis (PPA). Additionally, graph theory measures to explore network segregation and integration were computed. Results Our results showed a longer characteristic path length and a decreased degree of EMCI in comparison to the other groups. Additionally, an increased FC in several regions in LMCI and AD in contrast to HC and EMCI was detected. These results suggest a maladaptive short-term mechanism to maintain cognition. Conclusion The increased pattern of FC in several regions in LMCI and AD is observable in all the analyses; however, the PPA enabled us to reduce the computational demands and offered new specific dynamic FC findings.
Collapse
Affiliation(s)
- Lucía Penalba-Sánchez
- Facultat de Psicologia, Ciències de l’educació i de l’Esport, Blanquerna, Universitat Ramon Llull, Barcelona, Spain,Human Neurobehavioral Laboratory (HNL), Research Centre for Human Development (CEDH), Faculdade de Educação e Psicologia, Universidade Católica Portuguesa, Porto, Portugal,NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom,*Correspondence: Lucía Penalba-Sánchez,
| | - Patrícia Oliveira-Silva
- Human Neurobehavioral Laboratory (HNL), Research Centre for Human Development (CEDH), Faculdade de Educação e Psicologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Alexander Luke Sumich
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Ignacio Cifre
- Facultat de Psicologia, Ciències de l’educació i de l’Esport, Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
6
|
Qiu T, Xie F, Zeng Q, Shen Z, Du G, Xu X, Wang C, Li X, Luo X, Li K, Huang P, Zhang T, Zhang J, Dai S, Zhang M. Interactions between cigarette smoking and cognitive status on functional connectivity of the cortico-striatal circuits in individuals without dementia: A resting-state functional MRI study. CNS Neurosci Ther 2022; 28:1195-1204. [PMID: 35506354 PMCID: PMC9253779 DOI: 10.1111/cns.13852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/27/2022] Open
Abstract
Aims Cigarette smoking is a modifiable risk factor for Alzheimer's disease (AD), and controlling risk factors may curb the progression of AD. However, the underlying neural mechanisms of the effects of smoking on cognition remain largely unclear. Therefore, we aimed to explore the interaction effects of smoking × cognitive status on cortico‐striatal circuits, which play a crucial role in addiction and cognition, in individuals without dementia. Methods We enrolled 304 cognitively normal (CN) non‐smokers, 44 CN smokers, 130 mild cognitive impairment (MCI) non‐smokers, and 33 MCI smokers. The mixed‐effect analysis was performed to explore the interaction effects between smoking and cognitive status (CN vs. MCI) based on functional connectivity (FC) of the striatal subregions (caudate, putamen, and nucleus accumbens [NAc]). Results The significant interaction effects of smoking × cognitive status on FC of the striatal subregions were detected in the left inferior parietal lobule (IPL), bilateral cuneus, and bilateral anterior cingulate cortex (ACC). Specifically, increased FC of right caudate to left IPL was found in CN smokers compared with non‐smokers. The MCI smokers showed decreased FC of right caudate to left IPL and of right putamen to bilateral cuneus and increased FC of bilateral NAc to bilateral ACC compared with CN smokers and MCI non‐smokers. Furthermore, a positive correlation between FC of the NAc to ACC with language and memory was detected in MCI smokers. Conclusions Cigarette smoking could affect the function of cortico‐striatal circuits in patients with MCI. Our findings suggest that quitting smoking in the prodromal stage of AD may have the potential to prevent disease progression.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Fei Xie
- Department of Equipment and Medical Engineering, Linyi People's Hospital, Linyi, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guijin Du
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Li
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jinling Zhang
- Cancer Center, Linyi People's Hospital, Linyi, China
| | - Shouping Dai
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
7
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
8
|
Wang X, Wang Q, Zhang P, Qian S, Liu S, Liu DQ. Reducing Inter-Site Variability for Fluctuation Amplitude Metrics in Multisite Resting State BOLD-fMRI Data. Neuroinformatics 2021; 19:23-38. [PMID: 32285299 DOI: 10.1007/s12021-020-09463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been reported that resting state fluctuation amplitude (RSFA) exhibits extremely large inter-site variability, which limits its application in multisite studies. Although global normalization (GN) based approaches are efficient in reducing the site effects, they may cause spurious results. In this study, our purpose was to find alternative strategies to minimize the substantial site effects for RSFA, without the risk of introducing artificial findings. We firstly modified the ALFF algorithm so that it is conceptually validated and insensitive to data length, then found that (a) global mean amplitude of low-frequency fluctuation (ALFF) covaried only with BOLD signal intensity, while global mean fractional ALFF (fALFF) was significantly correlated with TRs across different sites; (b) The inter-site variations in raw RSFA values were significant across the entire brain and exhibited similar trends between gray matter and white matter; (c) For ALFF, signal intensity rescaling could dramatically reduce inter-site variability by several orders, but could not fully removed the globally distributed inter-site variability. For fALFF, the global site effects could be completely removed by TR controlling; (d) Meanwhile, the magnitude of the inter-site variability of fALFF could also be reduced to an acceptable level, as indicated by the detection power of fALFF in multisite data quite close to that in monosite data. Thus our findings suggest GN based harmonization methods could be replaced with only controlling for confounding factors including signal scaling, TR and full-band power.
Collapse
Affiliation(s)
- Xinbo Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Qing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Peiwen Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Shufang Qian
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Shiyu Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
9
|
Köbe T, Binette AP, Vogel JW, Meyer PF, Breitner JCS, Poirier J, Villeneuve S. Vascular risk factors are associated with a decline in resting-state functional connectivity in cognitively unimpaired individuals at risk for Alzheimer's disease: Vascular risk factors and functional connectivity changes. Neuroimage 2021; 231:117832. [PMID: 33549747 DOI: 10.1016/j.neuroimage.2021.117832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Resting-state functional connectivity is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. However, evidence is lacking regarding longitudinal changes in functional connectivity. This study includes 247 cognitively unimpaired individuals with a family history of sporadic AD (185 women/ 62 men; mean [SD] age of 63 [5.3] years). Plasma total-, HDL-, and LDL-cholesterol and systolic and diastolic blood pressure were measured at baseline. Global (whole-brain) brain functional connectivity and connectivity from canonical functional networks were computed from resting-state functional MRI obtained at baseline and ~3.5 years of annual follow-ups, using a predefined functional parcellation. A subsample underwent Aβ- and tau-PET (n=91). Linear mixed-effects models demonstrated that global functional connectivity increased over time across the entire sample. In contrast, higher total-cholesterol and LDL-cholesterol levels were associated with greater reduction of functional connectivity in the default-mode network over time. In addition, higher diastolic blood pressure was associated with global functional connectivity reduction. The associations were similar when the analyses were repeated using two other functional brain parcellations. Aβ and tau deposition in the brain were not associated with changes in functional connectivity over time in the subsample. These findings provide evidence that vascular burden is associated with a decrease in functional connectivity over time in older adults with elevated risk for AD. Future studies are needed to determine if the impact of vascular risk factors on functional brain changes precede the impact of AD pathology on functional brain changes.
Collapse
Affiliation(s)
- Theresa Köbe
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada; German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany.
| | - Alexa Pichet Binette
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - Jacob W Vogel
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Pierre-François Meyer
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - John C S Breitner
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, McGill University, H3A 1A1, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, Quebec, Canada.
| | | |
Collapse
|
10
|
Amaefule CO, Dyrba M, Wolfsgruber S, Polcher A, Schneider A, Fliessbach K, Spottke A, Meiberth D, Preis L, Peters O, Incesoy EI, Spruth EJ, Priller J, Altenstein S, Bartels C, Wiltfang J, Janowitz D, Bürger K, Laske C, Munk M, Rudolph J, Glanz W, Dobisch L, Haynes JD, Dechent P, Ertl-Wagner B, Scheffler K, Kilimann I, Düzel E, Metzger CD, Wagner M, Jessen F, Teipel SJ. Association between composite scores of domain-specific cognitive functions and regional patterns of atrophy and functional connectivity in the Alzheimer's disease spectrum. Neuroimage Clin 2020; 29:102533. [PMID: 33360018 PMCID: PMC7770965 DOI: 10.1016/j.nicl.2020.102533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/24/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cognitive decline has been found to be associated with gray matter atrophy and disruption of functional neural networks in Alzheimer's disease (AD) in structural and functional imaging (fMRI) studies. Most previous studies have used single test scores of cognitive performance among monocentric cohorts. However, cognitive domain composite scores could be more reliable than single test scores due to the reduction of measurement error. Adopting a multicentric resting state fMRI (rs-fMRI) and cognitive domain approach, we provide a comprehensive description of the structural and functional correlates of the key cognitive domains of AD. METHOD We analyzed MRI, rs-fMRI and cognitive domain score data of 490 participants from an interim baseline release of the multicenter DELCODE study cohort, including 54 people with AD, 86 with Mild Cognitive Impairment (MCI), 175 with Subjective Cognitive Decline (SCD), and 175 Healthy Controls (HC) in the AD-spectrum. Resulting cognitive domain composite scores (executive, visuo-spatial, memory, working memory and language) from the DELCODE neuropsychological battery (DELCODE-NP), were previously derived using confirmatory factor analysis. Statistical analyses examined the differences between diagnostic groups, and the association of composite scores with regional atrophy and network-specific functional connectivity among the patient subgroup of SCD, MCI and AD. RESULT Cognitive performance, atrophy patterns and functional connectivity significantly differed between diagnostic groups in the AD-spectrum. Regional gray matter atrophy was positively associated with visuospatial and other cognitive impairments among the patient subgroup in the AD-spectrum. Except for the visual network, patterns of network-specific resting-state functional connectivity were positively associated with distinct cognitive impairments among the patient subgroup in the AD-spectrum. CONCLUSION Consistent associations between cognitive domain scores and both regional atrophy and network-specific functional connectivity (except for the visual network), support the utility of a multicentric and cognitive domain approach towards explicating the relationship between imaging markers and cognition in the AD-spectrum.
Collapse
Affiliation(s)
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | | | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Dix Meiberth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Goettingen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Matthias Munk
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Janna Rudolph
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Goettingen, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Functional Connectivity in Neurodegenerative Disorders: Alzheimer's Disease and Frontotemporal Dementia. Top Magn Reson Imaging 2020; 28:317-324. [PMID: 31794504 DOI: 10.1097/rmr.0000000000000223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders are a growing cause of morbidity and mortality worldwide. Onset is typically insidious and clinical symptoms of behavioral change, memory loss, or cognitive dysfunction may not be evident early in the disease process. Efforts have been made to discover biomarkers that allow for earlier diagnosis of neurodegenerative disorders, to initiate treatment that may slow the course of clinical deterioration. Neuronal dysfunction occurs earlier than clinical symptoms manifest. Thus, assessment of neuronal function using functional brain imaging has been examined as a potential biomarker. While most early studies used task-functional magnetic resonance imaging (fMRI), with the more recent technique of resting-state fMRI, "intrinsic" relationships between brain regions or brain networks have been studied in greater detail in neurodegenerative disorders. In Alzheimer's disease, the most common neurodegenerative disorder, and frontotemporal dementia, another of the common dementias, specific brain networks may be particularly susceptible to dysfunction. In this review, we highlight the major findings of functional connectivity assessed by resting state fMRI in Alzheimer's disease and frontotemporal dementia.
Collapse
|
12
|
Nagano-Saito A, Bellec P, Hanganu A, Jobert S, Mejia-Constain B, Degroot C, Lafontaine AL, Lissemore JI, Smart K, Benkelfat C, Monchi O. Why Is Aging a Risk Factor for Cognitive Impairment in Parkinson's Disease?-A Resting State fMRI Study. Front Neurol 2019; 10:267. [PMID: 30967835 PMCID: PMC6438889 DOI: 10.3389/fneur.2019.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/27/2019] [Indexed: 01/12/2023] Open
Abstract
Using resting-state functional MRI (rsfMRI) data of younger and older healthy volunteers and patients with Parkinson's disease (PD) with and without mild cognitive impairment (MCI) and applying two different analytic approaches, we investigated the effects of age, pathology, and cognition on brain connectivity. When comparing rsfMRI connectivity strength of PD patients and older healthy volunteers, reduction between multiple brain regions in PD patients with MCI (PD-MCI) compared with PD patients without MCI (PD-non-MCI) was observed. This group difference was not affected by the number and location of clusters but was reduced when age was included as a covariate. Next, we applied a graph-theory method with a cost-threshold approach to the rsfMRI data from patients with PD with and without MCI as well as groups of younger and older healthy volunteers. We observed decreased hub function (measured by degree and betweenness centrality) mainly in the medial prefrontal cortex (mPFC) in older healthy volunteers compared with younger healthy volunteers. We also found increased hub function in the posterior medial structure (precuneus and the cingulate cortex) in PD-non-MCI patients compared with older healthy volunteers and PD-MCI patients. Hub function in these posterior medial structures was positively correlated with cognitive function in all PD patients. Together these data suggest that overlapping patterns of hub modifications could mediate the effect of age as a risk factor for cognitive decline in PD, including age-related reduction of hub function in the mPFC, and recruitment availability of the posterior medial structure, possibly to compensate for impaired basal ganglia function.
Collapse
Affiliation(s)
- Atsuko Nagano-Saito
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Pierre Bellec
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada
| | - Alexandru Hanganu
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Stevan Jobert
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Béatriz Mejia-Constain
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Clotilde Degroot
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Anne-Louise Lafontaine
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada.,Movement Disorders Unit, McGill University Health Center, Montreal, QC, Canada.,Department of Neurology, Montreal Neurological Hospital, Montreal, QC, Canada.,Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jennifer I Lissemore
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Smart
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Chawki Benkelfat
- Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada
| | - Oury Monchi
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Department of Neurology & Neurosurgery, and Psychiatry, McGill University, Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, AB, Canada.,Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Eyler LT, Elman JA, Hatton SN, Gough S, Mischel AK, Hagler DJ, Franz CE, Docherty A, Fennema-Notestine C, Gillespie N, Gustavson D, Lyons MJ, Neale MC, Panizzon MS, Dale AM, Kremen WS. Resting State Abnormalities of the Default Mode Network in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2019; 70:107-120. [PMID: 31177210 PMCID: PMC6697380 DOI: 10.3233/jad-180847] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Large-scale brain networks such as the default mode network (DMN) are often disrupted in Alzheimer's disease (AD). Numerous studies have examined DMN functional connectivity in those with mild cognitive impairment (MCI), a presumed AD precursor, to discover a biomarker of AD risk. Prior reviews were qualitative or limited in scope or approach. OBJECTIVE We aimed to systematically and quantitatively review DMN resting state fMRI studies comparing MCI and healthy comparison (HC) groups. METHODS PubMed was searched for relevant articles. Study characteristics were abstracted and the number of studies showing no group difference or hyper- versus hypo-connnectivity in MCI was tallied. A voxel-wise (ES-SDM) meta-analysis was conducted to identify regional group differences. RESULTS Qualitatively, our review of 57 MCI versus HC comparisons suggests substantial inconsistency; 9 showed no group difference, 8 showed MCI > HC and 22 showed HC > MCI across the brain, and 18 showed regionally-mixed directions of effect. The meta-analysis of 31 studies revealed areas of significant hypo- and hyper-connectivity in MCI, including hypoconnectivity in the posterior cingulate cortex/precuneus (z = -3.1, p < 0.0001). Very few individual studies, however, showed patterns resembling the meta-analytic results. Methodological differences did not appear to explain inconsistencies. CONCLUSIONS The pattern of altered resting DMN function or connectivity in MCI is complex and variable across studies. To date, no index of DMN connectivity qualifies as a useful biomarker of MCI or risk for AD. Refinements to MCI diagnosis, including other biological markers, or longitudinal studies of progression to AD, might identify DMN alterations predictive of AD risk.
Collapse
Affiliation(s)
- Lisa T. Eyler
- Department of Psychiatry, University of California San Diego
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego
| | - Sean N Hatton
- Department of Psychiatry, University of California San Diego
- Department of Neurosciences, University of California San Diego
| | - Sarah Gough
- Department of Psychiatry, University of California San Diego
| | - Anna K. Mischel
- Department of Psychiatry, University of California San Diego
| | | | - Carol E. Franz
- Department of Psychiatry, University of California San Diego
| | - Anna Docherty
- Departments of Psychiatry & Human Genetics, University of Utah School of Medicine
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego
- Department of Radiology, University of California San Diego
| | - Nathan Gillespie
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University
| | | | | | - Michael C. Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University
| | | | - Anders M. Dale
- Department of Neurosciences, University of California San Diego
- Department of Radiology, University of California San Diego
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System
| |
Collapse
|
14
|
Zhuo Z, Mo X, Ma X, Han Y, Li H. Identifying aMCI with functional connectivity network characteristics based on subtle AAL atlas. Brain Res 2018; 1696:81-90. [PMID: 29729253 DOI: 10.1016/j.brainres.2018.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the subtle functional connectivity alterations of aMCI based on AAL atlas with 1024 regions (AAL_1024 atlas). MATERIALS AND METHODS Functional MRI images of 32 aMCI patients (Male/Female: 15/17, Ages: 66.8 ± 8.36 y) and 35 normal controls (Male/Female:13/22, Ages: 62.4 ± 8.14 y) were obtained in this study. Firstly, functional connectivity networks were constructed by Pearson's Correlation based on the subtle AAL_1024 atlas. Then, local and global network parameters were calculated from the thresholding functional connectivity matrices. Finally, multiple-comparison analysis was performed on these parameters to find the functional network alterations of aMCI. And furtherly, a couple of classifiers were adopted to identify the aMCI by using the network parameters. RESULTS More subtle local brain functional alterations were detected by using AAL_1024 atlas. And the predominate nodes including hippocampus, inferior temporal gyrus, inferior parietal gyrus were identified which was not detected by AAL_90 atlas. The identification of aMCI from normal controls were significantly improved with the highest accuracy (98.51%), sensitivity (100%) and specificity (97.14%) compared to those (88.06%, 84.38% and 91.43% for the highest accuracy, sensitivity and specificity respectively) obtained by using AAL_90 atlas. CONCLUSION More subtle functional connectivity alterations of aMCI could be found based on AAL_1024 atlas than those based on AAL_90 atlas. Besides, the identification of aMCI could also be improved.
Collapse
Affiliation(s)
- Zhizheng Zhuo
- Lab of Computer Simulation and Medical Imaging Processing, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Xiao Mo
- Lab of Computer Simulation and Medical Imaging Processing, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Xiangyu Ma
- Lab of Computer Simulation and Medical Imaging Processing, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing 100053, China.
| | - Haiyun Li
- Lab of Computer Simulation and Medical Imaging Processing, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Neural response to working memory demand predicts neurocognitive deficits in HIV. J Neurovirol 2017; 24:291-304. [PMID: 29280107 DOI: 10.1007/s13365-017-0607-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus (HIV) continues to have adverse effects on cognition and the brain in many infected people, despite a reduced incidence of HIV-associated dementia with combined antiretroviral therapy (cART). Working memory is often affected, along with attention, executive control, and cognitive processing speed. Verbal working memory (VWM) requires the interaction of each of the cognitive component processes along with a phonological loop for verbal repetition and rehearsal. HIV-related functional brain response abnormalities during VWM are evident in functional MRI (fMRI), though the neural substrate underlying these neurocognitive deficits is not well understood. The current study addressed this by comparing 24 HIV+ to 27 demographically matched HIV-seronegative (HIV-) adults with respect to fMRI activation on a VWM paradigm (n-back) relative to performance on two standardized tests of executive control, attention and processing speed (Stroop and Trail Making A-B). As expected, the HIV+ group had deficits on these neurocognitive tests compared to HIV- controls, and also differed in neural response on fMRI relative to neuropsychological performance. Reduced activation in VWM task-related brain regions on the 2-back was associated with Stroop interference deficits in HIV+ but not with either Trail Making A or B performance. Activation of the posterior cingulate cortex (PCC) of the default mode network during rest was associated with Hopkins Verbal Learning Test-2 (HVLT-2) learning in HIV+. These effects were not observed in the HIV- controls. Reduced dynamic range of neural response was also evident in HIV+ adults when activation on the 2-back condition was compared to the extent of activation of the default mode network during periods of rest. Neural dynamic range was associated with both Stroop and HVLT-2 performance. These findings provide evidence that HIV-associated alterations in neural activation induced by VWM demands and during rest differentially predict executive-attention and verbal learning deficits. That the Stroop, but not Trail Making was associated with VWM activation suggests that attentional regulation difficulties in suppressing interference and/or conflict regulation are a component of working memory deficits in HIV+ adults. Alterations in neural dynamic range may be a useful index of the impact of HIV on functional brain response and as a fMRI metric in predicting cognitive outcomes.
Collapse
|
16
|
Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 8:73-85. [PMID: 28560308 PMCID: PMC5436069 DOI: 10.1016/j.dadm.2017.03.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction We performed a systematic review and meta-analysis of the Alzheimer's disease (AD) literature to examine consistency of functional connectivity alterations in AD dementia and mild cognitive impairment, using resting-state functional magnetic resonance imaging. Methods Studies were screened using a standardized procedure. Multiresolution statistics were performed to assess the spatial consistency of findings across studies. Results Thirty-four studies were included (1363 participants, average 40 per study). Consistent alterations in connectivity were found in the default mode, salience, and limbic networks in patients with AD dementia, mild cognitive impairment, or in both groups. We also identified a strong tendency in the literature toward specific examination of the default mode network. Discussion Convergent evidence across the literature supports the use of resting-state connectivity as a biomarker of AD. The locations of consistent alterations suggest that highly connected hub regions in the brain might be an early target of AD.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Corresponding author. Tel.: +1-514-340-3540x3367; Fax: +1-514-340-2802.
| | - Angela Tam
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute Research Centre, Montreal, Quebec, Canada
| | - Christian Dansereau
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Orban
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Douglas Mental Health University Institute Research Centre, Montreal, Quebec, Canada
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pierre Bellec
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Corresponding author. Tel.: +1-514-340-3540x4782; Fax: +1-514-340-2802.
| |
Collapse
|
17
|
Dansereau C, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold D, Bellec P. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. Neuroimage 2017; 149:220-232. [DOI: 10.1016/j.neuroimage.2017.01.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
|
18
|
Anderkova L, Barton M, Rektorova I. Striato-cortical connections in Parkinson's and Alzheimer's diseases: Relation to cognition. Mov Disord 2017; 32:917-922. [DOI: 10.1002/mds.26956] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lubomira Anderkova
- Applied Neuroscience Research Group; Central European Institute of Technology, Masaryk University; Brno Czech Republic
- First Department of Neurology; St. Anne's University Hospital and School of Medicine, Masaryk University; Brno Czech Republic
| | - Marek Barton
- Multimodal and Functional Neuroimaging Research Group; Central European Institute of Technology, Masaryk University; Brno Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group; Central European Institute of Technology, Masaryk University; Brno Czech Republic
- First Department of Neurology; St. Anne's University Hospital and School of Medicine, Masaryk University; Brno Czech Republic
| |
Collapse
|
19
|
Teipel SJ, Wohlert A, Metzger C, Grimmer T, Sorg C, Ewers M, Meisenzahl E, Klöppel S, Borchardt V, Grothe MJ, Walter M, Dyrba M. Multicenter stability of resting state fMRI in the detection of Alzheimer's disease and amnestic MCI. Neuroimage Clin 2017; 14:183-194. [PMID: 28180077 PMCID: PMC5279697 DOI: 10.1016/j.nicl.2017.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/30/2016] [Accepted: 01/17/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND In monocentric studies, patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia exhibited alterations of functional cortical connectivity in resting-state functional MRI (rs-fMRI) analyses. Multicenter studies provide access to large sample sizes, but rs-fMRI may be particularly sensitive to multiscanner effects. METHODS We used data from five centers of the "German resting-state initiative for diagnostic biomarkers" (psymri.org), comprising 367 cases, including AD patients, MCI patients and healthy older controls, to assess the influence of the distributed acquisition on the group effects. We calculated accuracy of group discrimination based on whole brain functional connectivity of the posterior cingulate cortex (PCC) using pooled samples as well as second-level analyses across site-specific group contrast maps. RESULTS We found decreased functional connectivity in AD patients vs. controls, including clusters in the precuneus, inferior parietal cortex, lateral temporal cortex and medial prefrontal cortex. MCI subjects showed spatially similar, but less pronounced, differences in PCC connectivity when compared to controls. Group discrimination accuracy for AD vs. controls (MCI vs. controls) in the test data was below 76% (72%) based on the pooled analysis, and even lower based on the second level analysis stratified according to scanner. Only a subset of quality measures was useful to detect relevant scanner effects. CONCLUSIONS Multicenter rs-fMRI analysis needs to employ strict quality measures, including visual inspection of all the data, to avoid seriously confounded group effects. While pending further confirmation in biomarker stratified samples, these findings suggest that multicenter acquisition limits the use of rs-fMRI in AD and MCI diagnosis.
Collapse
Affiliation(s)
- Stefan J. Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
- DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Alexandra Wohlert
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Coraline Metzger
- Institute of Cognitive Neurology and Dementia Research (IKND), Department of Psychiatry and Psychotherapy, Otto von Guericke University, Germany and German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology of Klinikum rechts der Isar, Technische Universität München, Department of Psychiatry of Klinikum rechts der Isar, TUM-Neuroimaging Center, Einsteinstr. 1, 81675 Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Eva Meisenzahl
- Department of Psychiatry, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, Faculty of Medicine, University of Freiburg, Germany
- University Hospital of Old Age Psychiatry, Bern, Switzerland
| | - Viola Borchardt
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry, University Tübingen, Germany
| | - Michel J. Grothe
- DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Martin Walter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry, University Tübingen, Germany
| | - Martin Dyrba
- DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
| |
Collapse
|
20
|
Tam A, Dansereau C, Badhwar A, Orban P, Belleville S, Chertkow H, Dagher A, Hanganu A, Monchi O, Rosa-Neto P, Shmuel A, Breitner J, Bellec P. A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment. Data Brief 2016; 9:1122-1129. [PMID: 27924300 PMCID: PMC5128734 DOI: 10.1016/j.dib.2016.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/26/2023] Open
Abstract
We present group eight resolutions of brain parcellations for clusters generated from resting-state functional magnetic resonance images for 99 cognitively normal elderly persons and 129 patients with mild cognitive impairment, pooled from four independent datasets. This dataset was generated as part of the following study: Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies (Tam et al., 2015) [1]. The brain parcellations have been registered to both symmetric and asymmetric MNI brain templates and generated using a method called bootstrap analysis of stable clusters (BASC) (Bellec et al., 2010) [2]. We present two variants of these parcellations. One variant contains bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight resolutions). The second variant contains spatially connected regions of interest (ROIs) that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs across eight resolutions). We also present maps illustrating functional connectivity differences between patients and controls for four regions of interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex). The brain parcels and associated statistical maps have been publicly released as 3D volumes, available in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to generate this dataset is available on Github.
Collapse
Affiliation(s)
- Angela Tam
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Research Centre, Montreal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada
| | - Christian Dansereau
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada; Université de Montréal, QC, Canada
| | - AmanPreet Badhwar
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada; Université de Montréal, QC, Canada
| | - Pierre Orban
- Douglas Mental Health University Institute, Research Centre, Montreal, QC, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada
| | - Sylvie Belleville
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada; Université de Montréal, QC, Canada
| | | | | | - Alexandru Hanganu
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada; University of Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Oury Monchi
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada; Université de Montréal, QC, Canada; University of Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Research Centre, Montreal, QC, Canada
| | | | - John Breitner
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Research Centre, Montreal, QC, Canada
| | - Pierre Bellec
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, QC, Canada; Université de Montréal, QC, Canada
| | | |
Collapse
|
21
|
Lin F, Ren P, Mapstone M, Meyers SP, Porsteinsson A, Baran TM. The cingulate cortex of older adults with excellent memory capacity. Cortex 2016; 86:83-92. [PMID: 27930899 DOI: 10.1016/j.cortex.2016.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/03/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Memory deterioration is the earliest and most devastating cognitive deficit in normal aging and Alzheimer's disease (AD). Some older adults, known as "Supernormals", maintain excellent memory. This study examined relationships between cerebral amyloid deposition and functional connectivity (FC) within the cingulate cortex (CC) and between CC and other regions involved in memory maintenance between Supernormals, healthy controls (HC), and those at risk for AD (amnestic mild cognitive impairment [MCI]). Supernormals had significantly stronger FC between anterior CC and R-hippocampus, middle CC (MCC) and L-superior temporal gyrus, and posterior CC (PCC) and R-precuneus, while weaker FC between MCC and R-middle frontal gyrus and MCC and R-thalamus than other groups. All of these FC were significantly related to memory and global cognition in all participants. Supernormals had less amyloid deposition than other groups. Relationships between global cognition and FC were stronger among amyloid positive participants. Relationships between memory and FC remained regardless of amyloid level. This revealed how CC-related neural function participates in cognitive maintenance in the presence of amyloid deposition, potentially explaining excellent cognitive function among Supernormals.
Collapse
Affiliation(s)
- Feng Lin
- School of Nursing, University of Rochester Medical Center, United States; Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, United States; Department of Brain and Cognitive Science, University of Rochester, United States.
| | - Ping Ren
- School of Nursing, University of Rochester Medical Center, United States
| | - Mark Mapstone
- Department of Neurology, University of California-Irvine, United States
| | - Steven P Meyers
- Department of Imaging Sciences, University of Rochester Medical Center, United States
| | - Anton Porsteinsson
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, United States
| | - Timothy M Baran
- Department of Imaging Sciences, University of Rochester Medical Center, United States
| | | |
Collapse
|
22
|
Naro A, Corallo F, De Salvo S, Marra A, Di Lorenzo G, Muscarà N, Russo M, Marino S, De Luca R, Bramanti P, Calabrò RS. Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia. J Alzheimers Dis 2016; 53:1375-88. [DOI: 10.3233/jad-160305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|