1
|
Anggraini DR, Ilyas S, Hasibuan PAZ, Machrina Y, Purba A, Munir D, Putra IB, Betty. Anti-Aging Activity of Andaliman (Zanthoxylum Acanthopodium DC) Fruit Ethanol Extract on Brain Weight and p16INK4a Expression of Hippocampus in Aging Model Rats. Acta Inform Med 2022; 30:283-286. [PMID: 36467322 PMCID: PMC9665423 DOI: 10.5455/aim.2022.30.283-286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Physiological aging and due to oxidative stress in long term will have an impact on cellular response disorders, can caused aging of hippocampus and senility. Brain weight is known to decrease with age and p16INK4a as aging biomarkers have been investigated. Andaliman is one of typical herbal plants from North Sumatra has been widely used as an antioxidant, anti-inflammatory and anti-aging. OBJECTIVE This study was evaluated effect of andaliman (Zanthoxylum acanthopodium DC) fruit ethanol extract (AEE) on brain weight and p16INK4a expression in aging model rats. METHODS This study was carried out experimentally of 24 male wistar rats. The treatment group consisted of 4 groups; KN= negatif control (normal), KP= positif control (aging model rat), P1 and P2= aging model rat + AEE at dose 150 and 300mg/kgbw, respectively. The aging model rats were D-galactose-induced at dose of 150mg/kgbw for 8 weeks. Brain weigth were recorded by digital scales. p16INK4a expression using immunohistochemical methods. The data analysis with Anova test. RESULTS This study showed differences brain weight between groups (p=0.523). Brain weight in P1 (1.34±0,06) and P2 (1.30±0.09) tendency increased than KP (1.29±0.62). The p16INK4a expression between groups significant difference (p=0.041), continued with post hoc Least Significant Difference (LSD) showed p16INK4a expression in KN significant decreased than KP (p=0.027). Likewise, p16INK4a expression in P2 was significant decreased than KP (p=0.010). CONCLUSION Andaliman ethanol extract at a dose 300mg/kgbw for 8 weeks was improved aging process caused D-galactose induced.
Collapse
Affiliation(s)
- Dwi Rita Anggraini
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Yetty Machrina
- Department of Physiology, Faculty of Medicine,Universitas Sumatera Utara, Medan, Indonesia
| | - Ambrosius Purba
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Delfitri Munir
- Department of Ear, Nose & Throat, Head & Neck, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Imam Budi Putra
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Betty
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
2
|
Al-Sharif DS, Tucker CA, Coffman DL, Keshner EA. The effects of visual context on visual-vestibular mismatch revealed by electrodermal and postural response measures. J Neuroeng Rehabil 2022; 19:113. [PMID: 36266687 PMCID: PMC9584264 DOI: 10.1186/s12984-022-01093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND No objective criteria exist for diagnosis and treatment of visual-vestibular mismatch (VVM). OBJECTIVE To determine whether measures of electrodermal activity (EDA) and trunk acceleration will identify VVM when exposed to visual-vestibular conflict. METHODS A modified VVM questionnaire identified the presence of VVM (+ VVM) in 13 of 23 young adults (34 ± 8 years) diagnosed with vestibular migraine. Rod and frame tests and outcome measures for dizziness and mobility were administered. Participants stood on foam while viewing two immersive virtual environments. Trunk acceleration in three planes and electrodermal activity (EDA) were assessed with wearable sensors. Linear mixed effect (LME) models were used to examine magnitude and smoothness of trunk acceleration and tonic and phasic EDA. Welch's t-test and associations between measures were assessed with a Pearson Correlation Coefficient. Effect sizes of group mean differences were calculated. RESULTS Greater than 80% of all participants were visually dependent. Outcome measures were significantly poorer in the + VVM group: tonic EDA was lower (p < 0.001) and phasic EDA higher (p < 0.001). Postural accelerations varied across groups; LME models indicated a relationship between visual context, postural, and ANS responses in the + VVM group. CONCLUSIONS Lower tonic EDA with + VVM suggests canal-otolith dysfunction. The positive association between vertical acceleration, tonic EDA, and visual dependence suggests that increased vertical segmental adjustments are used to compensate. Visual context of the spatial environment emerged as an important control variable when testing or treating VVM.
Collapse
Affiliation(s)
- Doaa S Al-Sharif
- Department of Health and Rehabilitation Sciences, Temple University, 1301 Cecil B. Moore Avenue, Philadelphia, PA, 19122, USA
| | - Carole A Tucker
- Department of Health and Rehabilitation Sciences, Temple University, 1301 Cecil B. Moore Avenue, Philadelphia, PA, 19122, USA
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Donna L Coffman
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, PA, 19140, USA
- Department of Psychology, University of South Carolina, Columbia, SC, 29208, USA
| | - Emily A Keshner
- Department of Health and Rehabilitation Sciences, Temple University, 1301 Cecil B. Moore Avenue, Philadelphia, PA, 19122, USA.
| |
Collapse
|
3
|
Bernard JA. Don't forget the little brain: A framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev 2022; 137:104639. [PMID: 35346747 PMCID: PMC9119942 DOI: 10.1016/j.neubiorev.2022.104639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
With the rapidly growing population of older adults, an improved understanding of brain and cognitive aging is critical, given the impacts on health, independence, and quality of life. To this point, we have a well-developed literature on the cortical contributions to cognition in advanced age. However, while this work has been foundational for our understanding of brain and behavior in older adults, subcortical contributions, particularly those from the cerebellum, have not been integrated into these models and frameworks. Incorporating the cerebellum into models of cognitive aging is an important step for moving the field forward. There has also been recent interest in this structure in Alzheimer's dementia, indicating that such work may be beneficial to our understanding of neurodegenerative disease. Here, I provide an updated overview of the cerebellum in advanced age and propose that it serves as a critical source of scaffolding or reserve for cortical function. Age-related impacts on cerebellar function further impact cortical processing, perhaps resulting in many of the activation patterns commonly seen in aging.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, USA; Texas A&M Institute for Neuroscience, Texas A&M University, USA.
| |
Collapse
|
4
|
Sharifi MD, Karimi N, Karami M, Borhani Haghighi A, Shabani M, Bayat M. The Minocycline Ameliorated the Synaptic Plasticity Impairment in Vascular Dementia. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 20:435-449. [PMID: 35194458 PMCID: PMC8842628 DOI: 10.22037/ijpr.2020.113942.14576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) leads to vascular dementia with progressive hippocampal damage and cognitive impairments. In the present study, we compared early and late Minocycline (MINO) treatment on cognitive function, long and short-term synaptic-plasticity following CCH. We used bilateral common carotid arteries occlusion model (2VO) for induction of hypoperfusion. Male Sprague-Dawley rats were divided into 5 following groups (each having 2 subgroups): 2VO + V (vehicle), 2VO+MINO-E (early treatment of MINO on days 0 to 3 after 2VO), 2VO+MINO-L (late-treatment on days 21 to 32 after 2VO), control, and sham. Passive-avoidance (PA) and radial arm maze (RAM) tests were used to investigate learning and memory. Long term and short term synaptic plasticity were assessed by field potential recording, the brains were removed after recording and preserved for histological study to count pyramidal cells in CA1 region.Cerebral hypoperfusion could impair memory performance, synaptic plasticity, and basal synaptic transmission (BST) along with hippocampal cell loss. Thus, we found a significant reduction in step-through latency (STL) of PA test with a higher number of working and reference errors in RAM in CCH rats. However, only late treatment with MINO improved memory performance, synaptic plasticity, hippocampal cell loss, and increased neurotransmitter pool (NP) in CCH rats, but early treatment could not produce long-lasting beneficial effects 32 days after 2VO. MINO may improve synaptic plasticity and memory performance in hypo-perfused rats directly and indirectly by increasing NP and/or suppressing inflammatory factors, respectively.
Collapse
Affiliation(s)
- Mohammad Davood Sharifi
- Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Karimi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Karami
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Belo RF, Martins MLF, Shvachiy L, Costa-Coelho T, de Almeida-Borlido C, Fonseca-Gomes J, Neves V, Vicente Miranda H, Outeiro TF, Coelho JE, Xapelli S, Valente CA, Heras M, Bardaji E, Castanho MARB, Diógenes MJ, Sebastião AM. The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer's Disease Pathophysiology. Front Pharmacol 2020; 11:985. [PMID: 32733240 PMCID: PMC7363954 DOI: 10.3389/fphar.2020.00985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer’s disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid β peptide (Aβ). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aβ administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aβ-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aβ-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aβ oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aβ caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aβ-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida L F Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Liana Shvachiy
- Cardiovascular Autonomic Function Lab, Centro Cardiovascular da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina de Almeida-Borlido
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tiago F Outeiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, United Kingdom
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Montserrat Heras
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Girona, Spain
| | - Eduard Bardaji
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Girona, Spain
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Wells SS, Dawod M, Kennedy RT. CE-MS with electrokinetic supercharging and application to determination of neurotransmitters. Electrophoresis 2019; 40:2946-2953. [PMID: 31502303 PMCID: PMC6947659 DOI: 10.1002/elps.201900203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Electrokinetic supercharging (EKS) is known as one of the most effective online electrophoretic preconcentration techniques, though pairing with it with mass spectrometry has presented challenges. Here, EKS is successfully paired with ESI-MS/MS to provide a sensitive and robust method for analysis of biogenic amines in biological samples. Injection parameters including electric field strength and the buffer compositions used for the separation and focusing were investigated to achieve suitable resolution, high sensitivity, and compatibility with ESI-MS. Using EKS, the sensitivity of the method was improved 5000-fold compared to a conventional hydrodynamic injection with CZE. The separation allowed for baseline resolution of several neurotransmitters within 16 min with LODs down to 10 pM. This method was applied to targeted analysis of seven biogenic amines from rat brain stem and whole Drosophila tissue. This is the first method to use EKS with CE-ESI-MS/MS to analyze biological samples.
Collapse
Affiliation(s)
- Shane S Wells
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Mehla J, Lacoursiere S, Stuart E, McDonald RJ, Mohajerani MH. Gradual Cerebral Hypoperfusion Impairs Fear Conditioning and Object Recognition Learning and Memory in Mice: Potential Roles of Neurodegeneration and Cholinergic Dysfunction. J Alzheimers Dis 2018; 61:283-293. [PMID: 29154281 DOI: 10.3233/jad-170635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, male C57BL/6J mice were subjected to gradual cerebral hypoperfusion by implanting an ameroid constrictor (AC) on the left common carotid artery (CCA) and a stenosis on the right CCA. In the sham group, all surgical procedures were kept the same except no AC was implanted and stenosis was not performed. One month following the surgical procedures, fear conditioning and object recognition tests were conducted to evaluate learning and memory functions and motor functions were assessed using a balance beam test. At the experimental endpoint, mice were perfused and brains were collected for immunostaining and histology. Learning and memory as well as motor functions were significantly impaired in the hypoperfusion group. The immunoreactivity to choline acetyltransferase was decreased in dorsal striatum and basal forebrain of the hypoperfusion group indicating that cholinergic tone in these brain regions was compromised. In addition, an increased number of Fluoro-Jade positive neurons was also found in cerebral cortex, dorsal striatum and hippocampus indicating neurodegeneration in these brain regions. Based on this pattern of data, we argued that this mouse model would be a useful tool to investigate the therapeutic interventions for the treatment of vascular dementia. Additionally, this model could be employed to exploit the effect of microvascular occlusions on cognitive impairment in the absence and presence of Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Jogender Mehla
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Emily Stuart
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
8
|
Yang XR, Zhang XF, Zhang XM, Gao HY. Analgesic and anti-inflammatory activities and mechanisms of 70% ethanol extract of Zygophyllum macropodum in animals. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Li W, Liu H, Jiang H, Wang C, Guo Y, Sun Y, Zhao X, Xiong X, Zhang X, Zhang K, Nie Z, Pu X. (S)-Oxiracetam is the Active Ingredient in Oxiracetam that Alleviates the Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. Sci Rep 2017; 7:10052. [PMID: 28855592 PMCID: PMC5577264 DOI: 10.1038/s41598-017-10283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic cerebral hypoperfusion is a pathological state that is associated with the cognitive impairments in vascular dementia. Oxiracetam is a nootropic drug that is commonly used to treat cognitive deficits of cerebrovascular origins. However, oxiracetam is currently used as a racemic mixture whose effective ingredient has not been identified to date. In this study, we first identified that (S)-oxiracetam, but not (R)-oxiracetam, was the effective ingredient that alleviated the impairments of spatial learning and memory by ameliorating neuron damage and white matter lesions, increasing the cerebral blood flow, and inhibiting astrocyte activation in chronic cerebral hypoperfused rats. Furthermore, using MALDI-MSI and LC-MS/MS, we demonstrated that (S)-oxiracetam regulated ATP metabolism, glutamine-glutamate and anti-oxidants in the cortex region of hypoperfused rats. Altogether, our results strongly suggest that (S)-oxiracetam alone could be a nootropic drug for the treatment of cognitive impairments caused by cerebral hypoperfusion.
Collapse
Affiliation(s)
- Wan Li
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanjie Jiang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Chen Wang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yongfei Guo
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Xin Xiong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xianhua Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Ke Zhang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China. .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
10
|
Perazzo J, Lima C, Heras M, Bardají E, Lopes-Ferreira M, Castanho M. Neuropeptide Kyotorphin Impacts on Lipopolysaccharide-Induced Glucocorticoid-Mediated Inflammatory Response. A Molecular Link to Nociception, Neuroprotection, and Anti-Inflammatory Action. ACS Chem Neurosci 2017; 8:1663-1667. [PMID: 28472878 DOI: 10.1021/acschemneuro.7b00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neuropeptide kyotorphin (KTP) is a potent analgesic if administered directly into the brain. In contrast, KTP-amide (KTP-NH2) is analgesic, neuroprotective, and anti-inflammatory following systemic administration, albeit its mechanism of action is unknown. The aim of this study was to shed light on the mechanism of action of KTP-NH2 at the molecular level. KTP-NH2 does not inhibit the enkephalinases angiotensin-converting-enzyme and dipeptidyl-peptidase 3. Intravital microscopy showed that KTP-NH2 decreased the number of rolling leukocytes in a mouse model of inflammation induced by lipopolysaccharide (LPS). Pretreatment with metyrapone abrogated the action of KTP-NH2. Interestingly, stimulating rolling leukocytes using CXCL-1 is also counteracted by the KTP-NH2, but this effect is not abrogated by metyrapone. We conclude that KTP-NH2 has dual action: a glucocorticoid-mediated action, which is dominant in the full-fledged LPS-induced inflammation model, and a glucocorticoid-independent mechanism, which is predominant in models in which leukocyte rolling is stimulated but inflammation is not totally developed.
Collapse
Affiliation(s)
- Juliana Perazzo
- Faculdade
de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carla Lima
- Unidade
de Imunorregulação, Laboratório Especial de Toxinologia
Aplicada, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, Brazil
| | - Montserrat Heras
- Laboratori
d’Innovació en processos i Productes de Síntesi
Orgànica (LIPPSO), Department de Química, Universitat de Girona, Maria Aurelia Capmany 69, 17003 Girona, Spain
| | - Eduard Bardají
- Laboratori
d’Innovació en processos i Productes de Síntesi
Orgànica (LIPPSO), Department de Química, Universitat de Girona, Maria Aurelia Capmany 69, 17003 Girona, Spain
| | - Mônica Lopes-Ferreira
- Unidade
de Imunorregulação, Laboratório Especial de Toxinologia
Aplicada, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, Brazil
| | - Miguel Castanho
- Faculdade
de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Perazzo J, Castanho MARB, Sá Santos S. Pharmacological Potential of the Endogenous Dipeptide Kyotorphin and Selected Derivatives. Front Pharmacol 2017; 7:530. [PMID: 28127286 PMCID: PMC5226936 DOI: 10.3389/fphar.2016.00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
The endogenous peptide kyotorphin (KTP) has been extensively studied since it was discovered in 1979. The dipeptide is distributed unevenly over the brain but the majority is concentrated in the cerebral cortex. The putative KTP receptor has not been identified yet. As many other neuropeptides, KTP clearance is mediated by extracellular peptidases and peptide transporters. From the wide spectrum of biological activity of KTP, analgesia was by far the most studied. The mechanism of action is still unclear, but researchers agree that KTP induces Met-enkephalins release. More recently, KTP was proposed as biomarker of Alzheimer disease. Despite all that, KTP limited pharmacological value prompted researchers to develop derivatives more lipophilic and therefore more prone to cross the blood–brain barrier (BBB), and also more resistant to enzymatic degradation. Conjugation of KTP with functional molecules, such as ibuprofen, generated a new class of compounds with additional biological properties. Moreover, the safety profile of these derivatives compared to opioids and their efficacy as neuroprotective agents greatly increases their pharmacological value.
Collapse
Affiliation(s)
- Juliana Perazzo
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal
| | - Sónia Sá Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal
| |
Collapse
|
12
|
Perazzo J, Lopes-Ferreira M, Sá Santos S, Serrano I, Pinto A, Lima C, Bardaji E, Tavares I, Heras M, Conceição K, Castanho MARB. Endothelium-Mediated Action of Analogues of the Endogenous Neuropeptide Kyotorphin (Tyrosil-Arginine): Mechanistic Insights from Permeation and Effects on Microcirculation. ACS Chem Neurosci 2016; 7:1130-40. [PMID: 27244291 DOI: 10.1021/acschemneuro.6b00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kyotorphin (KTP) is an endogenous peptide with analgesic properties when administered into the central nervous system (CNS). Its amidated form (l-Tyr-l-Arg-NH2; KTP-NH2) has improved analgesic efficacy after systemic administration, suggesting blood-brain barrier (BBB) crossing. KTP-NH2 also has anti-inflammatory action impacting on microcirculation. In this work, selected derivatives of KTP-NH2 were synthesized to improve lipophilicity and resistance to enzymatic degradation while introducing only minor changes in the chemical structure: N-terminal methylation and/or use of d amino acid residues. Intravital microscopy data show that KTP-NH2 having a d-Tyr residue, KTP-NH2-DL, efficiently decreases the number of leukocyte rolling in a murine model of inflammation induced by bacterial lipopolysaccharide (LPS): down to 46% after 30 min with 96 μM KTP-NH2-DL. The same molecule has lower ability to permeate membranes (relative permeability of 0.38) and no significant activity in a behavioral test which evaluates thermal nociception (hot-plate test). On the contrary, methylated isomers at 96 μM increase leukocyte rolling up to nearly 5-fold after 30 min, suggesting a proinflammatory activity. They have maximal ability to permeate membranes (relative permeability of 0.8) and induce long-lasting antinociception.
Collapse
Affiliation(s)
- Juliana Perazzo
- Instituto de Medicina
Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mônica Lopes-Ferreira
- Unidade
de Imunorregulação, Laboratório Especial de Toxinologia
Aplicada, Instituto Butantan, Av. Vital Brasil, 1500 São Paulo, Brazil
| | - Sónia Sá Santos
- Instituto de Medicina
Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Isa Serrano
- Instituto de Medicina
Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Antónia Pinto
- Instituto de Medicina
Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carla Lima
- Unidade
de Imunorregulação, Laboratório Especial de Toxinologia
Aplicada, Instituto Butantan, Av. Vital Brasil, 1500 São Paulo, Brazil
| | - Eduard Bardaji
- Laboratori
d’Innovació en processos i Productes de Síntesi
Orgànica (LIPPSO), Department de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | - Isaura Tavares
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 4150-180 Porto, Portugal
- i3S
- Instituto de Inovação e Investigação
em Saúde, and Departamento de Biologia Experimental, Faculdade
de Medicina, Universidade do Porto, 4099-002 Porto, Portugal
| | - Montserrat Heras
- Laboratori
d’Innovació en processos i Productes de Síntesi
Orgànica (LIPPSO), Department de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | - Katia Conceição
- Departamento
de Ciência e Tecnologia, Universidade Federal de São Paulo, UNIFESP, Rua Talim, 330, 04021-001 São José dos Campos, Brazil
| | - Miguel A. R. B. Castanho
- Instituto de Medicina
Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|