1
|
Tejedor-Romero L, López-Cuadrado T, Almazán-Isla J, Calero M, García López FJ, de Pedro-Cuesta J. Survival Patterns of Human Prion Diseases in Spain, 1998–2018: Clinical Phenotypes and Etiological Clues. Front Neurosci 2022; 15:773727. [PMID: 35126037 PMCID: PMC8811314 DOI: 10.3389/fnins.2021.773727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundHuman transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative disorders of short duration. There are few studies on TSE survival. This study sought to analyze the survival and related factors of a TSE patient cohort, based on a nationwide surveillance system in Spain.MethodsSurvival analyses were performed on 1,530 cases diagnosed across the period 1998–2018 in Spain. We calculated median survival times and plotted survival curves using the Kaplan–Meier method for all cases and for sporadic TSE (sTSE) and genetic TSE (gTSE). Crude and adjusted Cox proportional hazard models were used to identify variables associated with shorter survival.FindingsMedian age at onset decreased from the sporadic forms to gTSE and, lastly, to acquired TSE. Overall median and interquartile range (IQR) survival time was 5.2 (IQR, 3.0–11.7) months and 4.9 (IQR, 2.8–10.8) months in sporadic cases and 9 (IQR, 4.9 to over 12) months in genetic cases, p < 0.001. Male sex, older age at onset, presence of 14-3-3 protein, typical MRI, and MM and VV polymorphisms at codon 129 were associated with shorter survival. gTSE showed higher survival in crude comparisons but not after adjustment.InterpretationTSE survival in Spain replicates both the magnitude of that shown and the TSE entity-specific population patterns observed in Western countries but differs from features described in Asian populations, such as the Japanese. The reduction in differences in survival between gTSE and sTSE on adjusting for covariates and international patterns might support the view that gTSE and sTSE share causal and pathophysiological features.
Collapse
Affiliation(s)
- Laura Tejedor-Romero
- Department of Neurodegeneration, Ageing and Mental Health, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Preventive Medicine Unit, La Princesa University Teaching Hospital, Madrid, Spain
- *Correspondence: Laura Tejedor-Romero,
| | - Teresa López-Cuadrado
- Department of Neurodegeneration, Ageing and Mental Health, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Javier Almazán-Isla
- Department of Neurodegeneration, Ageing and Mental Health, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Alzheimer’s Disease Research Unit, Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas), Queen Sofia Foundation Alzheimer Centre, Madrid, Spain
- Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| | - Fernando J. García López
- Department of Neurodegeneration, Ageing and Mental Health, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús de Pedro-Cuesta
- Department of Neurodegeneration, Ageing and Mental Health, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
2
|
De Pedro-Cuesta J, Almazán-Isla J, Tejedor-Romero L, Ruiz-Tovar M, Avellanal F, Rábano A, Calero M, García López FJ. Human prion disease surveillance in Spain, 1993-2018: an overview. Prion 2021; 15:94-106. [PMID: 34120571 PMCID: PMC8205053 DOI: 10.1080/19336896.2021.1933873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In Spain, human transmissible spongiform encephalopathies (TSEs) have been undergoing continuous surveillance for over 25 years. In 1995, the system was launched as an EU Concerted Action, with EU surveillance network procedures being incorporated from 2002 onwards. The aim of this report was to describe performance and outcomes of this surveillance system across the period 1993–2018. Neurology and public health specialists from every region reported cases to a central hub at the Carlos III Health Institute, Madrid. In all, eight accidentally transmitted cases and five definite variant Creutzfeldt-Jakob disease (vCJD) patients were reported. All vCJD cases were diagnosed between 2005 and 2008. Two of these were family/dietary-related and spatially linked to a third. Yearly incidence of sporadic CJD per million was 1.25 across the period 1998–2018, and displayed a north-south gradient with the highest incidence in La Rioja, Navarre and the Basque Country. Genetic TSEs were observed to be clustered in the Basque Country, with a 4-fold incidence over the national rate. A total of 120 (5.6%) non-TSE sporadic, conformational, rapidly progressing neurodegenerative and vascular brain disorders were reported as suspect CJD. We conclude that TSEs in Spain displayed geographically uneven, stable medium incidences for the sporadic and genetic forms, a temporal and spatial family cluster for vCJD, and decreasing numbers for dura-mater-associated forms. The vCJD surveillance, framed within the EU network, might require continuing to cover all prion disorders. There is need for further strategic surveillance research focusing on case definition of rapid-course, conformational encephalopathies and surgical risk.
Collapse
Affiliation(s)
- Jesús De Pedro-Cuesta
- Department of Neurodegeneration, Ageing and Mental Health, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Javier Almazán-Isla
- Department of Neurodegeneration, Ageing and Mental Health, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Laura Tejedor-Romero
- Department of Neurodegeneration, Ageing and Mental Health, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain
| | - María Ruiz-Tovar
- Department of Neurodegeneration, Ageing and Mental Health, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Fuencisla Avellanal
- Department of Neurodegeneration, Ageing and Mental Health, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Neuropathology and Brain Tissue Bank, Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Neuropathology and Brain Tissue Bank, Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain.,Chronic Disease Programme (UFIEC) , Carlos III Health Institute, Majadahonda, Madrid, Spain
| | - Fernando J García López
- Department of Neurodegeneration, Ageing and Mental Health, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | |
Collapse
|
3
|
The Neuromelanin Paradox and Its Dual Role in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10010124. [PMID: 33467040 PMCID: PMC7829956 DOI: 10.3390/antiox10010124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with an increasing dysfunction of key brain homeostasis mechanisms and represents the main risk factor across most neurodegenerative disorders. However, the degree of dysregulation and the affectation of specific pathways set apart normal aging from neurodegenerative disorders. In particular, the neuronal metabolism of catecholaminergic neurotransmitters appears to be a specifically sensitive pathway that is affected in different neurodegenerations. In humans, catecholaminergic neurons are characterized by an age-related accumulation of neuromelanin (NM), rendering the soma of the neurons black. This intracellular NM appears to serve as a very efficient quencher for toxic molecules. However, when a neuron degenerates, NM is released together with its load (many undegraded cellular components, transition metals, lipids, xenobiotics) contributing to initiate and worsen an eventual immune response, exacerbating the oxidative stress, ultimately leading to the neurodegenerative process. This review focuses on the analysis of the role of NM in normal aging and neurodegeneration related to its capabilities as an antioxidant and scavenging of harmful molecules, versus its involvement in oxidative stress and aberrant immune response, depending on NM saturation state and its extracellular release.
Collapse
|
4
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
5
|
López FJG, Ruiz-Tovar M, Almazán-Isla J, Alcalde-Cabero E, Calero M, de Pedro-Cuesta J. Risk of transmission of sporadic Creutzfeldt-Jakob disease by surgical procedures: systematic reviews and quality of evidence. ACTA ACUST UNITED AC 2018; 22. [PMID: 29090678 PMCID: PMC5718390 DOI: 10.2807/1560-7917.es.2017.22.43.16-00806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Sporadic Creutzfeldt–Jakob disease (sCJD) is potentially transmissible to humans. Objective: This study aimed to summarise and rate the quality of the evidence of the association between surgery and sCJD. Design and methods: Firstly, we conducted systematic reviews and meta-analyses of case–control studies with major surgical procedures as exposures under study. To assess quality of evidence, we used the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. Secondly, we conducted a systematic review of sCJD case reports after sharing neurosurgical instruments. Results: Thirteen case–control studies met the inclusion criteria for the systematic review of case–control studies. sCJD was positively associated with heart surgery, heart and vascular surgery and eye surgery, negatively associated with tonsillectomy and appendectomy, and not associated with neurosurgery or unspecified major surgery. The overall quality of evidence was rated as very low. A single case–control study with a low risk of bias found a strong association between surgery conducted more than 20 years before disease onset and sCJD. Seven cases were described as potentially transmitted by reused neurosurgical instruments. Conclusion: The association between surgery and sCJD remains uncertain. Measures currently recommended for preventing sCJD transmission should be strongly maintained. Future studies should focus on the potential association between sCJD and surgery undergone a long time previously.
Collapse
Affiliation(s)
- Fernando J García López
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,National Epidemiology Centre, Carlos III Institute of Health, Madrid, Spain
| | - María Ruiz-Tovar
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,National Epidemiology Centre, Carlos III Institute of Health, Madrid, Spain
| | - Javier Almazán-Isla
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,National Epidemiology Centre, Carlos III Institute of Health, Madrid, Spain
| | - Enrique Alcalde-Cabero
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,National Epidemiology Centre, Carlos III Institute of Health, Madrid, Spain
| | - Miguel Calero
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain.,Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús de Pedro-Cuesta
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,National Epidemiology Centre, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
6
|
Mu J, Chaudhuri KR, Bielza C, de Pedro-Cuesta J, Larrañaga P, Martinez-Martin P. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms. Front Aging Neurosci 2017; 9:301. [PMID: 28979203 PMCID: PMC5611404 DOI: 10.3389/fnagi.2017.00301] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale (n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study (n = 540). k-means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.
Collapse
Affiliation(s)
- Jesse Mu
- Department of Computer Science, Boston CollegeChestnut Hill, MA, United States
| | - Kallol R Chaudhuri
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College LondonLondon, United Kingdom
| | - Concha Bielza
- Computational Intelligence Group, Department of Artificial Intelligence, Universidad Politécnica de MadridMadrid, Spain
| | | | - Pedro Larrañaga
- Computational Intelligence Group, Department of Artificial Intelligence, Universidad Politécnica de MadridMadrid, Spain
| | | |
Collapse
|