1
|
Fu C, Hou X, Zheng C, Zhang Y, Gao Z, Yan Z, Ye Y, Liu B. Immediate modulatory effects of transcutaneous vagus nerve stimulation on patients with Parkinson's disease: a crossover self-controlled fMRI study. Front Aging Neurosci 2024; 16:1444703. [PMID: 39507202 PMCID: PMC11537911 DOI: 10.3389/fnagi.2024.1444703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background Previous studies have evaluated the safety and efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) for the treatment of Parkinson's disease (PD). However, the mechanism underlying the effect of taVNS on PD remains to be elucidated. This study aimed to investigate the immediate effects of taVNS in PD patients. Methods This crossover self-controlled study included 50 PD patients. Each patient underwent three sessions of resting-state functional magnetic resonance imaging (rs-fMRI) under three conditions: real taVNS, sham taVNS, and no taVNS intervention. We analyzed whole-brain amplitude of low-frequency fluctuations (ALFF) from preprocessed fMRI data across different intervention conditions. ALFF values in altered brain regions were correlated with clinical symptoms in PD patients. Results Forty-seven participants completed the study and were included in the final analysis. Real taVNS was associated with a widespread decrease in ALFF in the right hemisphere, including the superior parietal lobule, precentral gyrus, postcentral gyrus, middle occipital gyrus, and cuneus (voxel p < 0.001, GRF corrected). The ALFF value in the right superior parietal lobule during real taVNS was negatively correlated with the Unified Parkinson's Disease Rating Scale Part III (r = -0.417, p = 0.004, Bonferroni corrected). Conclusion TaVNS could immediately modulate the functional activity of brain regions involved in superior parietal lobule, precentral gyrus, postcentral gyrus, middle occipital gyrus, and cuneus. These findings offer preliminary insights into the mechanism of taVNS in treating PD and bolster confidence in its long-term therapeutic potential. TaVNS appears to reduce ALFF values in specific brain regions, suggesting a potential modulation mechanism for treating PD.
Collapse
Affiliation(s)
- Chengwei Fu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Acupuncture, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunye Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijie Gao
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Nan X, Li W, Wang L. Functional magnetic resonance imaging studies in bipolar disorder in resting state: A coordinates-based meta-analysis. Psychiatry Res Neuroimaging 2024; 344:111869. [PMID: 39146823 DOI: 10.1016/j.pscychresns.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Exploring changes in the intrinsic activity of the brain in people with bipolar disorder (BD) is necessary. However, the findings have not yet led to consistent conclusions. In this regard, this paper aims to extract more obvious differential brain areas and neuroimaging markers, for the purpose of providing assistance for early clinical diagnosis and subsequent treatment. We conducted a meta-analysis of whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) studies using seed-based d-mapping software that examined differences in amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) between patients with BD and healthy controls (HCs). Seed-based d-Mapping (formerly Signed Differential Mapping) with Permutation of Subject Images, or SDM-PSI, is a statistical technique for meta-analyzing studies of differences in brain activity or structure. A total of 16 articles involving 1112 individuals were included in this study for meta-analysis. This paper confidently analyzes the correlation between the clinical scales HAMD, HAMA, and YMRS, and the area of difference. We found significant changes that increased activation in the anterior connective and left lens nucleus, the nucleus of the shell, and BA 48 in BD patients compared with HC (P < 0.05, uncorrected), as well as a significant correlation between HAMD and the left superior frontal gyrus (after FWE correction P < 0.05). Therefore, basal ganglia and frontal cortex may have important significance in the pathogenesis and pathological basis of BD, making it an important issue to be attached importance to.
Collapse
Affiliation(s)
- Xia Nan
- Baiyin City Central Hospital, Baiyin, China
| | - Wenling Li
- The NO.2 People's Hospital of Lanzhou, Lanzhou, China
| | - Lin Wang
- Department of Radiology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China; Cancer Clinical Medical Research Center, Gansu combination of traditional Chinese and Western medicine, Lanzhou, China.
| |
Collapse
|
3
|
Lu J, Zhang X, Shu Z, Han J, Yu N. A dynamic brain network decomposition method discovers effective brain hemodynamic sub-networks for Parkinson's disease. J Neural Eng 2024; 21:026047. [PMID: 38621377 DOI: 10.1088/1741-2552/ad3eb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Objective.Dopaminergic treatment is effective for Parkinson's disease (PD). Nevertheless, the conventional treatment assessment mainly focuses on human-administered behavior examination while the underlying functional improvements have not been well explored. This paper aims to investigate brain functional variations of PD patients after dopaminergic therapy.Approach.This paper proposed a dynamic brain network decomposition method and discovered brain hemodynamic sub-networks that well characterized the efficacy of dopaminergic treatment in PD. Firstly, a clinical walking procedure with functional near-infrared spectroscopy was developed, and brain activations during the procedure from fifty PD patients under the OFF and ON states (without and with dopaminergic medication) were captured. Then, dynamic brain networks were constructed with sliding-window analysis of phase lag index and integrated time-varying functional networks across all patients. Afterwards, an aggregated network decomposition algorithm was formulated based on aggregated effectiveness optimization of functional networks in spanning network topology and cross-validation network variations, and utilized to unveil effective brain hemodynamic sub-networks for PD patients. Further, dynamic sub-network features were constructed to characterize the brain flexibility and dynamics according to the temporal switching and activation variations of discovered sub-networks, and their correlations with differential treatment-induced gait alterations were analyzed.Results.The results demonstrated that PD patients exhibited significantly enhanced flexibility after dopaminergic therapy within a sub-network related to the improvement of motor functions. Other sub-networks were significantly correlated with trunk-related axial symptoms and exhibited no significant treatment-induced dynamic interactions.Significance.The proposed method promises a quantified and objective approach for dopaminergic treatment evaluation. Moreover, the findings suggest that the gait of PD patients comprises distinct motor domains, and the corresponding neural controls are selectively responsive to dopaminergic treatment.
Collapse
Affiliation(s)
- Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Xinyuan Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, People's Republic of China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Wu J, Chen J, Wen J, Qin J, Tan S, Duanmu X, Yuan W, Zheng Q, Zhang B, Xu X, Zhang M. Neurovascular coupling alteration in drug-naïve Parkinson's disease: The underlying molecular mechanisms and levodopa's restoration effects. Neurobiol Dis 2024; 191:106406. [PMID: 38199273 DOI: 10.1016/j.nbd.2024.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients exhibit an imbalance between neuronal activity and perfusion, referred to as abnormal neurovascular coupling (NVC). Nevertheless, the underlying molecular mechanism and how levodopa, the standard treatment in PD, regulates NVC is largely unknown. MATERIAL AND METHODS A total of 52 drug-naïve PD patients and 49 normal controls (NCs) were enrolled. NVC was characterized in vivo by relating cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF). Motor assessments and MRI scanning were conducted on drug-naïve patients before and after levodopa therapy (OFF/ON state). Regional NVC differences between patients and NCs were identified, followed by an assessment of the associated receptors/transporters. The influence of levodopa on NVC, CBF, and ALFF within these abnormal regions was analyzed. RESULTS Compared to NCs, OFF-state patients showed NVC dysfunction in significantly lower NVC in left precentral, postcentral, superior parietal cortex, and precuneus, along with higher NVC in left anterior cingulate cortex, right olfactory cortex, thalamus, caudate, and putamen (P-value <0.0006). The distribution of NVC differences correlated with the density of dopaminergic, serotonin, MU-opioid, and cholinergic receptors/transporters. Additionally, levodopa ameliorated abnormal NVC in most of these regions, where there were primarily ALFF changes with limited CBF modifications. CONCLUSION Patients exhibited NVC dysfunction primarily in the striato-thalamo-cortical circuit and motor control regions, which could be driven by dopaminergic and nondopaminergic systems, and levodopa therapy mainly restored abnormal NVC by modulating neuronal activity.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijin Yuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianshi Zheng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
6
|
Xie H, Yang Y, Sun Q, Li ZY, Ni MH, Chen ZH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Yu Y, Yan LF, Cui GB. Abnormalities of cerebral blood flow and the regional brain function in Parkinson's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol 2023; 14:1289934. [PMID: 38162449 PMCID: PMC10755479 DOI: 10.3389/fneur.2023.1289934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Jiang X, Pan Y, Zhu S, Wang Y, Gu R, Jiang Y, Shen B, Zhu J, Xu S, Yan J, Dong J, Zhang W, Xiao C, Zhang L. Alterations of Regional Homogeneity in Parkinson's Disease with Rapid Eye Movement Sleep Behavior Disorder. Neuropsychiatr Dis Treat 2022; 18:2967-2978. [PMID: 36570022 PMCID: PMC9785149 DOI: 10.2147/ndt.s384752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Patients with rapid eye movement (REM) sleep behavior disorder (RBD) in Parkinson's disease (PD-RBD) tend to have poor cognitive performance and faster cognitive deterioration, and the potential mechanism is still ambiguous. Therefore, this study aimed to detect the alterations in local brain function in PD-RBD. Methods Fifty patients, including 23 patients with PD-RBD and 27 patients with PD without RBD (PD-nRBD), and 26 healthy controls were enrolled. All subjects were subjected to one-night polysomnography and underwent resting-state functional magnetic resonance imaging (rs-fMRI). The fMRI images of the three groups were analyzed by regional homogeneity (ReHo) to observe the local neural activity. Correlations between altered ReHo values and chin electromyographic (EMG) density scores and cognitive scores in the PD subgroups were assessed. Results Compared with the patients with PD-nRBD, the patients with PD-RBD had higher ReHo values in the frontal cortex (the right superior frontal gyrus, the right middle frontal gyrus and the left medial superior frontal gyrus), the right caudate nucleus and the right anterior cingulate gyrus, and compared with the HCs, the patients with PD-RBD had lower ReHo values in the bilateral cuneus, the bilateral precuneus, the left inferior temporal gyrus and the left inferior occipital gyrus. For the patients with PD-RBD, the phasic chin EMG density scores were positively correlated with the ReHo values in the left medial superior frontal gyrus, and the tonic chin EMG density scores were positively correlated with the ReHo values in the right anterior cingulate gyrus. Conclusion This study indicates that increased ReHo in the frontal cortex, the caudate nucleus and the anterior cingulate gyrus may be linked with the abnormal motor behaviors during REM sleep and that decreased ReHo in the posterior regions may be related to the visuospatial-executive function in patients with PD-RBD.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Pan
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Sha Zhu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yaxi Wang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruxin Gu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yinyin Jiang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Bo Shen
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Zhu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shulan Xu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Yan
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jingde Dong
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenbin Zhang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chaoyong Xiao
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Zhang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
Zhang P, Zhang Y, Luo Y, Wang L, Wang K. Regional activity alterations in Parkinson's disease patients with anxiety disorders: A resting-state functional magnetic resonance imaging study. Front Aging Neurosci 2022; 14:1055160. [PMID: 36589538 PMCID: PMC9800784 DOI: 10.3389/fnagi.2022.1055160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies have revealed alteration of functional connectivity (FC) in Parkinson's disease patients with anxiety (PD-A), but local brain activities associated with anxiety in Parkinson's disease (PD) patients remain to be elucidated. Regional homogeneity (ReHo) analysis was employed to investigate alterations of regional brain activities in PD-A patients. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 42 PD-A patients, 41 PD patients without anxiety (PD-NA), and 40 age-and gender-matched healthy control (HC) subjects. ReHo analysis was used to investigate the synchronization of neuronal activities in brain regions in the three groups. The relationship between ReHo value and anxiety score in the PD-A group was also investigated. Results Parkinson's disease patients with anxiety showed increased ReHo values in the bilateral frontal lobes, caudate nucleus, and anterior cingulate gyrus [Gaussian random field (GRF) correction, voxel size p < 0.01, cluster size p < 0.05], compared with PD-NA patients and HC subjects, but the ReHo values of the right cerebellar hemisphere and posterior cerebellar lobe decreased (GRF correction, voxel size p < 0.01, cluster size p < 0.05). The increased ReHo values of the right superior frontal gyrus (r = 0.633, p = 0.001) and anterior cingulate gyrus (r = 0.45, p = 0.01) were positively correlated with anxiety scores in PD-A patients. Conclusion The development of PD-A may be associated with dysfunctional local activities in multiple brain regions, including the frontal cortex, cerebella, basal ganglia, and limbic system. Abnormal ReHo values in these brain regions may serve as neuroimaging markers for the early diagnosis of PD-A. The results suggest that using ReHo analysis to identify functional changes in core regions may advance our understanding of the pathophysiological mechanisms underlying PD-A.
Collapse
Affiliation(s)
- Peiyao Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yanling Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Kang Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Kang Wang,
| |
Collapse
|
9
|
Cao K, Pang H, Yu H, Li Y, Guo M, Liu Y, Fan G. Identifying and validating subtypes of Parkinson's disease based on multimodal MRI data via hierarchical clustering analysis. Front Hum Neurosci 2022; 16:919081. [PMID: 35966989 PMCID: PMC9372337 DOI: 10.3389/fnhum.2022.919081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We wished to explore Parkinson's disease (PD) subtypes by clustering analysis based on the multimodal magnetic resonance imaging (MRI) indices amplitude of low-frequency fluctuation (ALFF) and gray matter volume (GMV). Then, we analyzed the differences between PD subtypes. Methods Eighty-six PD patients and 44 healthy controls (HCs) were recruited. We extracted ALFF and GMV according to the Anatomical Automatic Labeling (AAL) partition using Data Processing and Analysis for Brain Imaging (DPABI) software. The Ward linkage method was used for hierarchical clustering analysis. DPABI was employed to compare differences in ALFF and GMV between groups. Results Two subtypes of PD were identified. The “diffuse malignant subtype” was characterized by reduced ALFF in the visual-related cortex and extensive reduction of GMV with severe impairment in motor function and cognitive function. The “mild subtype” was characterized by increased ALFF in the frontal lobe, temporal lobe, and sensorimotor cortex, and a slight decrease in GMV with mild impairment of motor function and cognitive function. Conclusion Hierarchical clustering analysis based on multimodal MRI indices could be employed to identify two PD subtypes. These two PD subtypes showed different neurodegenerative patterns upon imaging.
Collapse
Affiliation(s)
- Kaiqiang Cao
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huize Pang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongmei Yu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingmei Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miaoran Guo
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Liu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Guoguang Fan
| |
Collapse
|
10
|
Wu C, Matias C, Foltynie T, Limousin P, Zrinzo L, Akram H. Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2021; 15:729677. [PMID: 34690721 PMCID: PMC8526554 DOI: 10.3389/fnhum.2021.729677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Neuronal loss in Parkinson's Disease (PD) leads to widespread neural network dysfunction. While graph theory allows for analysis of whole brain networks, patterns of functional connectivity (FC) associated with motor response to deep brain stimulation of the subthalamic nucleus (STN-DBS) have yet to be explored. Objective/Hypothesis: To investigate the distributed network properties associated with STN-DBS in patients with advanced PD. Methods: Eighteen patients underwent 3-Tesla resting state functional MRI (rs-fMRI) prior to STN-DBS. Improvement in UPDRS-III scores following STN-DBS were assessed 1 year after implantation. Independent component analysis (ICA) was applied to extract spatially independent components (ICs) from the rs-fMRI. FC between ICs was calculated across the entire time series and for dynamic brain states. Graph theory analysis was performed to investigate whole brain network topography in static and dynamic states. Results: Dynamic analysis identified two unique brain states: a relative hypoconnected state and a relative hyperconnected state. Time spent in a state, dwell time, and number of transitions were not correlated with DBS response. There were no significant FC findings, but graph theory analysis demonstrated significant relationships with STN-DBS response only during the hypoconnected state - STN-DBS was negatively correlated with network assortativity. Conclusion: Given the widespread effects of dopamine depletion in PD, analysis of whole brain networks is critical to our understanding of the pathophysiology of this disease. Only by leveraging graph theoretical analysis of dynamic FC were we able to isolate a hypoconnected brain state that contained distinct network properties associated with the clinical effects of STN-DBS.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
11
|
Altered Regional Homogeneity and Functional Connectivity during Microlesion Period after Deep Brain Stimulation in Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:2711365. [PMID: 34512944 PMCID: PMC8429001 DOI: 10.1155/2021/2711365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Background Patients with Parkinson's disease (PD) undergoing deep brain electrode implantation experience a temporary improvement in motor symptoms before the electrical stimulation begins. We usually call this the microlesion effect (MLE), but the mechanism behind it is not clear. Purpose This study aimed to assess the alterations in brain functions at the regional and whole-brain levels, using regional homogeneity (ReHo) and functional connectivity (FC), during the postoperative microlesion period after deep brain stimulation (DBS) in PD patients. Method Resting-state functional MRI data were collected from 27 PD patients before and after the first day of DBS and 12 healthy controls (HCs) in this study. The ReHo in combination with FC analysis was used to investigate the alterations of regional brain activity in all the subjects. Results There were increased ReHo in the basal ganglia-thalamocortical circuit (left supplementary motor area and bilateral paracentral lobule), whereas decreased ReHo in the default mode network (DMN) (left angular gyrus, bilateral precuneus), prefrontal cortex (bilateral middle frontal gyrus), and the cerebello-thalamocortical (CTC) circuit (Cerebellum_crus2/1_L) after DBS. In addition, we also found abnormal FC in the lingual gyrus, cerebellum, and DMN. Conclusion Microlesion of the thalamus caused by electrode implantation can alter the activity of the basal ganglia-thalamocortical circuit, prefrontal cortex, DMN, and CTC circuit and induce abnormal FC in the lingual gyrus, cerebellum, prefrontal cortex, and DMN among PD patients. The findings of this study contribute to the understanding of the mechanism of MLE.
Collapse
|
12
|
Song Y, Xu W, Chen S, Hu G, Ge H, Xue C, Qi W, Lin X, Chen J. Functional MRI-Specific Alterations in Salience Network in Mild Cognitive Impairment: An ALE Meta-Analysis. Front Aging Neurosci 2021; 13:695210. [PMID: 34381352 PMCID: PMC8350339 DOI: 10.3389/fnagi.2021.695210] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia. Amnestic MCI (aMCI) and non-amnestic MCI are the two subtypes of MCI with the former having a higher risk for progressing to Alzheimer's disease (AD). Compared with healthy elderly adults, individuals with MCI have specific functional alterations in the salience network (SN). However, no consistent results are documenting these changes. This meta-analysis aimed to investigate the specific functional alterations in the SN in MCI and aMCI. Methods: We systematically searched PubMed, Embase, and Web of Science for scientific neuroimaging literature based on three research methods, namely, functional connectivity (FC), regional homogeneity (ReHo), and the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF). Then, we conducted the coordinate-based meta-analysis by using the activation likelihood estimation algorithm. Results: In total, 30 functional neuroimaging studies were included. After extracting the data and analyzing it, we obtained specific changes in some brain regions in the SN including decreased ALFF/fALFF in the left superior temporal gyrus, the insula, the precentral gyrus, and the precuneus in MCI and aMCI; increased FC in the thalamus, the caudate, the superior temporal gyrus, the insula, and the cingulate gyrus in MCI; and decreased ReHo in the anterior cingulate gyrus in aMCI. In addition, as to FC, interactions of the SN with other networks including the default mode network and the executive control network were also observed mainly in the middle frontal gyrus and superior frontal gyrus in MCI and inferior frontal gyrus in aMCI. Conclusions: Specific functional alternations in the SN and interactions of the SN with other networks in MCI could be useful as potential imaging biomarkers for MCI or aMCI. Meanwhile, it provided a new insight in predicting the progression of health to MCI or aMCI and novel targets for proper intervention to delay the progression. Systematic Review Registration: [PROSPERO], identifier [No. CRD42020216259].
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Luo B, Lu Y, Qiu C, Dong W, Xue C, Zhang L, Liu W, Zhang W. Altered Spontaneous Neural Activity and Functional Connectivity in Parkinson's Disease With Subthalamic Microlesion. Front Neurosci 2021; 15:699010. [PMID: 34354566 PMCID: PMC8329380 DOI: 10.3389/fnins.2021.699010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transient improvement in motor symptoms are immediately observed in patients with Parkinson's disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood. Purpose We utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS. Method Overall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients. Result Relative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN). Conclusion The subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Deng X, Liu Z, Kang Q, Lu L, Zhu Y, Xu R. Cortical Structural Connectivity Alterations and Potential Pathogenesis in Mid-Stage Sporadic Parkinson's Disease. Front Aging Neurosci 2021; 13:650371. [PMID: 34135748 PMCID: PMC8200851 DOI: 10.3389/fnagi.2021.650371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many clinical symptoms of sporadic Parkinson's disease (sPD) cannot be completely explained by a lesion of the simple typical extrapyramidal circuit between the striatum and substantia nigra. Therefore, this study aimed to explore the new potential damaged pathogenesis of other brain regions associated with the multiple and complex clinical symptoms of sPD through magnetic resonance imaging (MRI). A total of 65 patients with mid-stage sPD and 35 healthy controls were recruited in this study. Cortical structural connectivity was assessed by seed-based analysis using the vertex-based morphology of MRI. Seven different clusters in the brain regions of cortical thickness thinning derived from the regression analysis using brain size as covariates between sPD and control were selected as seeds. Results showed that the significant alteration of cortical structural connectivity mainly occurred in the bilateral frontal orbital, opercular, triangular, precentral, rectus, supplementary-motor, temporal pole, angular, Heschl, parietal, supramarginal, postcentral, precuneus, occipital, lingual, cuneus, Rolandic-opercular, cingulum, parahippocampal, calcarine, olfactory, insula, paracentral-lobule, and fusiform regions at the mid-stage of sPD. These findings suggested that the extensive alteration of cortical structural connectivity is one of possible pathogenesis resulting in the multiple and complex clinical symptoms in sPD.
Collapse
Affiliation(s)
- Xia Deng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qin Kang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Guo W, Jin W, Li N, Gao J, Wang J, Chang Y, Yin K, Chen Y, Zhang S, Wang T. Brain activity alterations in patients with Parkinson's disease with cognitive impairment based on resting-state functional MRI. Neurosci Lett 2021; 747:135672. [PMID: 33515623 DOI: 10.1016/j.neulet.2021.135672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to investigate the differences in regional homogeneity (ReHo) values in patients with Parkinson's disease (PD) with cognitive impairment (PD-CI) and thus explore the neuropathological mechanism of PD-CI. METHODS Resting-state functional magnetic resonance imaging scans were obtained from 36 patients with PD and 20 healthy controls (HCs) in this study. The PD group comprised 20 patients with PD-CI and 16 patients with PD with normal cognitive function (PD-NC). The data were analyzed using ReHo analysis to observe the changes in brain activity in patients with PD-CI and PD-NC. Statistical comparison was performed using covariance analysis and post hoc t tests. RESULTS The patients in the PD-CI group were older than those in the PD-NC and HC groups. Compared with the HC group, the PD-CI group showed that the ReHo value decreased in the right supplementary motor area, left lingual gyrus, left thalamus, and left precuneus, but increased in the left fusiform gyrus. Compared with the HC group, the PD-NC group showed that the ReHo value decreased in the right cerebellum_6, but increased in the left inferior temporal gyrus, left orbital inferior frontal gyrus, and left precentral gyrus. Compared with the PD-NC group, the PD-CI group showed that the ReHo value decreased in the right precuneus, left triangular inferior frontal gyrus, left middle frontal gyrus, right opercular inferior frontal gyrus, left orbital inferior frontal gyrus, left supramarginal gyrus, left angular gyrus, left inferior temporal gyrus, and right cerebelum_7b, but increased in the left precentral gyrus and left fusiform gyrus. CONCLUSIONS Age was a risk factor for cognitive decline in patients with PD. The ReHo value in the default mode network (DMN) was closely related to PD cognitive function, and the DMN was affected before CI and continuously deteriorated with disease progression. The disorder of visual conduction pathway was involved in CI in patients with PD, but these patients could recruit cognitive resources by improving visual-spatial ability. The cognitive function in such patients was related to the dopaminergic, cholinergic, and noradrenergic systems. The information transmission efficiency of the cerebellum-thalamus-cortex loop was reduced and involved in the cognitive decline process in patients with PD.
Collapse
Affiliation(s)
- Weina Guo
- Department of Graduate School of Hebei North University, Zhangjiakou, China; Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Na Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Junshu Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jiuxue Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yajun Chang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Kuochang Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yingmin Chen
- Department of Radiology, Hebei General Hospital, Shijiazhuang, China
| | - Shuqian Zhang
- Department of Radiology, Hebei General Hospital, Shijiazhuang, China
| | - Tianjun Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
16
|
Xing Y, Fu S, Li M, Ma X, Liu M, Liu X, Huang Y, Xu G, Jiao Y, Wu H, Jiang G, Tian J. Regional Neural Activity Changes in Parkinson's Disease-Associated Mild Cognitive Impairment and Cognitively Normal Patients. Neuropsychiatr Dis Treat 2021; 17:2697-2706. [PMID: 34429605 PMCID: PMC8380131 DOI: 10.2147/ndt.s323127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The aim of this study was to compare regional homogeneity (ReHo) changes in Parkinson's disease mild cognitive impairment (PD-MCI) patients with respect to normal controls (NC) and those with cognitively normal PD (PD-CN). Further, the study investigated the relationship between ReHo changes in PD patients and neuropsychological variation. PATIENTS AND METHODS Thirty PD-MCI, 19 PD-CN, and 21 NC subjects were enrolled. Resting state functional magnetic resonance imaging data of all subjects were collected, and regional brain activity was measured for ReHo. Analysis of covariance for ReHo was determined between the PD-MCI, PD-CN, and NC groups. Spearman rank correlations were assessed using the ReHo maps and data from the neuropsychological tests. RESULTS In comparison with NC, PD-CN patients showed significantly higher ReHo values in the right middle frontal gyrus (MFG) and lower ReHo values in the left supramarginal gyrus, bilateral inferior parietal lobule (IPL), and the right postcentral gyrus (PCG). In comparison with PD-CN patients, PD-MCI patients displayed significantly higher ReHo values in the right PCG, left middle occipital gyrus (MOG) and IPL. No significant correlation between ReHo indices and the neuropsychological scales was observed. CONCLUSION Our finding revealed that decreases in ReHo in the default mode network (DMN) may appear before PD-related cognitive impairment. In order to preserve executive attention capacity, ReHo in the right MFG in PD patients lacking cognition impairment increased for compensation. PD-MCI showed increased ReHo in the left MOG, which might have been caused by visual and visual-spatial dysfunction, and increased ReHo in the left IPL, which might reflect network disturbance and induce cognition deficits.
Collapse
Affiliation(s)
- Yilan Xing
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Meng Li
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Mengchen Liu
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xintong Liu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yan Huang
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guang Xu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yonggang Jiao
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hong Wu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Li MG, Bian XB, Zhang J, Wang ZF, Ma L. Aberrant voxel-based degree centrality in Parkinson's disease patients with mild cognitive impairment. Neurosci Lett 2020; 741:135507. [PMID: 33217504 DOI: 10.1016/j.neulet.2020.135507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
The purpose was to explore the intrinsic dysconnectivity pattern of whole-brain functional networks in Parkinson's disease patients with mild cognitive impairment (PD-MCI) using a voxel-wise degree centrality (DC) analysis approach. The resting-state functional magnetic resonance imaging (rs-fMRI) scanning was performed in all subjects including PD-MCI, PD patients with no cognitive impairment (PD-NCI), and healthy controls (HCs). DC mapping was used to identify functional connectivity (FC) alterations among these groups. Correlation between abnormal DC and clinical features was performed. Secondary seed-based FC analyses and voxel-based morphometry (VBM) analyses were also conducted. Compared with HCs, PD-MCI and PD-NCI showed DC abnormalities mainly in the right temporal lobe, thalamus, left cuneus, middle frontal gyrus, and corpus callosum. Compared with PD-NCI, PD-MCI showed abnormal DC in the left fusiform gyrus (FFG) and left cerebellum lobule VI, left cuneus, right hippocampus, and bilateral precuneus. In PD-MCI patients, correlation analyses revealed that DC in the left FFG was positively correlated with the Montreal Cognitive Assessment (MoCA) scores, and DC in the left precuneus was negatively correlated with the MoCA scores. Secondary seed-based FC analysis further revealed FC changes mainly in the default mode network, right middle cingulum, right supramarginal gyrus, and right postcentral/precentral gyrus. However, no significant difference was found in the secondary VBM analysis. The findings suggest that dysfunction in extensive brain areas is involved in PD-MCI. Among these regions, the left precuneus, FFG, and cerebellum VI may be the key hubs in the pathogenesis of PD-MCI.
Collapse
Affiliation(s)
- Ming-Ge Li
- School of Medicine, Nankai University, Tianjin, China; Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Bing Bian
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China; Department of Radiology, The Six Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhen-Fu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- School of Medicine, Nankai University, Tianjin, China; Department of Radiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
18
|
Shared functional neural substrates in Parkinson's disease and drug-induced parkinsonism: association with dopaminergic depletion. Sci Rep 2020; 10:11617. [PMID: 32669608 PMCID: PMC7363811 DOI: 10.1038/s41598-020-68514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 06/24/2020] [Indexed: 11/22/2022] Open
Abstract
While drug-induced parkinsonism (DIP) is mainly caused by blockage of the dopaminergic pathway, multiple neurotransmitter systems besides the dopaminergic system are involved in Parkinson’s disease (PD). Therefore, alterations found in both DIP and PD might be manifestations of dopaminergic dysfunction. To prove this hypothesis, we aimed to define the areas commonly involved in DIP and PD and determine whether the overlapping areas were associated with the dopaminergic system. 68 PD patients, 69 DIP patients and 70 age-and sex-matched controls underwent resting-state functional MRI (rsfMRI). Regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF were calculated and compared. Afterwards, we compared mean rsfMRI values extracted from the overlapping areas with uptake quantitatively measured on dopamine transporter (DAT) images and neuropsychological test results. Compared to the controls, both PD and DIP patients revealed altered rsfMRI values in the right insular cortex, right temporo-occipital cortex, and cerebellum. Among them, decreased ALFF in the right insular cortex and decreased ReHo in the right occipital cortex were correlated with decreased DAT uptake in the caudate as well as executive, visuospatial, and language function. Increased ReHo in the cerebellum was also correlated with decrease DAT uptake in the posterior and ventral anterior putamen, but not with cognitive function. In conclusion, the insular cortex, occipital cortex, and cerebellum were commonly affected in both PD and DIP patients and might be associated with altered dopaminergic modulation.
Collapse
|
19
|
Cao X, Wang X, Xue C, Zhang S, Huang Q, Liu W. A Radiomics Approach to Predicting Parkinson's Disease by Incorporating Whole-Brain Functional Activity and Gray Matter Structure. Front Neurosci 2020; 14:751. [PMID: 32760248 PMCID: PMC7373781 DOI: 10.3389/fnins.2020.00751] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive, chronic, and neurodegenerative disorder that is primarily diagnosed by clinical examinations and magnetic resonance imaging (MRI). In this study, we proposed a machine learning based radiomics method to predict PD. Fifty healthy controls (HC) along with 70 PD patients underwent resting-state magnetic resonance imaging (rs-fMRI). For all subjects, we extracted five types of 6664 features, including mean amplitude of low-frequency fluctuation (mALFF), mean regional homogeneity (mReHo), resting-state functional connectivity (RSFC), voxel-mirrored homotopic connectivity (VMHC) and gray matter (GM) volume. After conducting dimension reduction utilizing Least absolute shrinkage and selection operator (LASSO), fifty-three radiomic features including 46 RSFCs, 1 mALFF, 3 mReHos, 1 VMHC, 2 GM volumes and 1 clinical factor were retained. The selected features also indicated the most discriminative regions for PD. We further conducted model fitting procedure for classifying subjects in the training set employing random forest and support volume machine (SVM) to evaluate the performance of the two methods. After cross-validation, both methods achieved 100% accuracy and area under curve (AUC) for distinguishing between PD and HC in the training set. In the testing set, SVM performed better than random forest with the accuracy, true positive rate (TPR) and AUC being 85%, 1 and 0.97, respectively. These findings demonstrate the radiomics technique has the potential to support radiological diagnosis and to achieve high classification accuracy for clinical diagnostic systems for patients with PD.
Collapse
Affiliation(s)
- Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Xiao Wang
- Department of Radiology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, FL, United States
| | - Qingling Huang
- Department of Radiology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Li K, Zhao H, Li CM, Ma XX, Chen M, Li SH, Wang R, Lou BH, Chen HB, Su W. The Relationship between Side of Onset and Cerebral Regional Homogeneity in Parkinson's Disease: A Resting-State fMRI Study. PARKINSON'S DISEASE 2020; 2020:5146253. [PMID: 32676180 PMCID: PMC7336244 DOI: 10.1155/2020/5146253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Motor symptoms are usually asymmetric in Parkinson's disease (PD), and asymmetry in PD may involve widespread brain areas. We sought to evaluate the effect of asymmetry on the whole brain spontaneous activity using the measure regional homogeneity (ReHo) through resting-state functional MRI. METHODS We recruited 30 PD patients with left onset (LPD), 27 with right side (RPD), and 32 controls with satisfactory data. Their demographic, clinical, and neuropsychological information were obtained. Resting-state functional MRI was performed, and ReHo was used to determine the brain activity. ANCOVA was utilized to analyze between-group differences in ReHo and the associations between abnormal ReHo, and various clinical and neuropsychological variables were explored by Spearman's correlation. RESULTS LPD patients had higher ReHo in the right temporal pole than the controls. RPD patients had increased ReHo in the right temporal pole and decreased ReHo in the primary motor cortex and premotor area, compared with the controls. Directly comparing LPD and RPD patients did not show a significant difference in ReHo. ReHo of the right temporal pole was significantly correlated with depression and anxiety in RPD patients. CONCLUSIONS Both LPD and RPD have increased brain activity synchronization in the right temporal pole, and only RPD has decreased brain activity synchronization in the right frontal motor areas. The changed brain activity in the right temporal pole may play a compensatory role for depression and anxiety in PD, and the altered cerebral function in the right frontal motor area in RPD may represent the reorganization of the motor system in RPD.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Hong Zhao
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Chun-Mei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Xin-Xin Ma
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Shu-Hua Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Rui Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Bao-Hui Lou
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Hai-Bo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| |
Collapse
|
21
|
Li MG, Liu TF, Zhang TH, Chen ZY, Nie BB, Lou X, Wang ZF, Ma L. Alterations of regional homogeneity in Parkinson's disease with mild cognitive impairment: a preliminary resting-state fMRI study. Neuroradiology 2019; 62:327-334. [PMID: 31822931 DOI: 10.1007/s00234-019-02333-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Mild cognitive impairment (MCI) is commonly observed in Parkinson's disease (PD), even in the early stages. However, the neural substrates of cognitive impairment in PD remain unclear. The aim of the current study was to investigate the change of local brain function in PD patients with MCI. METHODS Fifty patients with PD, including 25 PD patients with MCI (PD-MCI) and 25 PD patients with normal cognition (PD-NC), and 25 age- and sex-matched healthy controls (HC) were enrolled. Conventional magnetic resonance imaging (MRI), 3D structural images, and resting state-functional MRI (rs-fMRI) were performed in all subjects. Regional homogeneity (ReHo) was measured based on the rs-fMRI images to investigate the altered local brain functions. RESULTS Brain regions with decreased ReHo were located in the left posterior cerebellar lobe in PD sub-groups compared to the HC group, and the brain regions with increased ReHo were located in the limbic lobe (right precuneus/bilateral middle cingulate cortex) in PD-MCI compared with HC group. PD-MCI presented with increased ReHo in the bilateral precuneus/left superior parietal lobe and decreased ReHo in the left insula compared to PD-NC. ReHo values for the left precuneus were negatively related to neuropsychological scores, and ReHo values for the left insula were positively related to neuropsychological scores in PD subjects. CONCLUSION The present study demonstrated abnormal spontaneous synchrony in the left insula and left precuneus in patients with PD-MCI compared to PD-NC, which might provide a novel insight into the diagnosis and clinical treatment of cognitive impairment in PD.
Collapse
Affiliation(s)
- Ming-Ge Li
- School of Medicine, Nankai University, Tianjin, China.,Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tie-Fang Liu
- Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tian-Hao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ye Chen
- Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Bin-Bin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhen-Fu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- School of Medicine, Nankai University, Tianjin, China. .,Department of Radiology, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
22
|
Chen X, Hou X, Luo X, Zhou S, Liu X, Liu B, Chen J. Altered Intra- and Inter-regional Functional Connectivity of the Anterior Cingulate Gyrus in Patients With Tremor-Dominant Parkinson's Disease Complicated With Sleep Disorder. Front Aging Neurosci 2019; 11:319. [PMID: 31824298 PMCID: PMC6881235 DOI: 10.3389/fnagi.2019.00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate changes in brain function at the regional and whole-brain levels in patients with tremor-dominant Parkinson's disease (TDPD) complicated by sleep disorder (SD) by regional homogeneity (ReHo) and functional connectivity (FC) analysis of whole-brain resting-state functional magnetic resonance images. Materials and Methods: ReHo and seed-based FC analyses were conducted among 32 patients with TDPD and SD (TDPD-SD), 24 with TDPD and no SD (TDPD-NSD), and 23 healthy controls (HCs) to assess spontaneous brain activity and network-level brain function. Correlation analyses were used to examine the associations between brain activity and the clinical data. Results: Anterior cingulate gyrus (ACC) ReHo values differed significantly among the groups. ACC ReHo values were increased in TDPD-SD vs. HC and TDPD-SD vs. TDPD-NSD. ACC ReHo values were reduced in TDPD-NSD vs. HC. TDPD-SD ReHo values were positively correlated with Pittsburgh Sleep Quality Index (PSQI) scores (r = 0.41, p = 0.020) but negatively correlated with Parkinson's Disease Sleep Scale (PDSS) scores (r = -0.38, p = 0.030). FC analysis using ACC as a mask showed that FC of the left olfactory cortex (L-OC), right straight gyrus (R-SG), right superior parietal gyrus (R-SPG), and right precuneus differed significantly among the groups. FC values between R-SG and ACC were significantly lower in TDPD-SD than in TDPD-NSD, while the FC of L-OC and R-OC with ACC was significantly lower in TDPD-SD than in HC. FC between ACC and L-OC, R-SPG, and the right precuneus was lower in TDPD-NSD than in HC. There was no correlation between the FC values and other clinical data in any of the groups. Conclusion: Localized abnormal activity in TDPD-SD was chiefly triggered by ACC. The change in the ReHo of ACC is closely related to the severity of TDPD-associated SD, revealing the role of this region as a regulator of the sleep mechanism in TDPD. Significant abnormal FC was found between R-SG and ACC in TDPD-SD but was not shown to correlate with clinical data.
Collapse
Affiliation(s)
- Xinjie Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sifan Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, ZHUHAI Branch of Guangdong Hospital of Traditional Chinese Medicine, Zhuhai, China
| |
Collapse
|
23
|
Alterations of Interhemispheric Functional Connectivity and Degree Centrality in Cervical Dystonia: A Resting-State fMRI Study. Neural Plast 2019; 2019:7349894. [PMID: 31178903 PMCID: PMC6507243 DOI: 10.1155/2019/7349894] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cervical dystonia (CD) is a neurological movement disorder characterized by involuntary head and neck movements and postures. Reports on microstructural and functional abnormalities in multiple brain regions not limited to the basal ganglia have been increasing in patients with CD. However, the neural bases of CD are unclear. This study is aimed at identifying cerebral functional abnormalities in CD by using resting-state functional magnetic resonance imaging (rs-fMRI). Methods Using rs-fMRI data, voxel-mirrored homotopic connectivity (VMHC) and degree centrality were used to compare the alterations of the rs-functional connectivity (FC) between 19 patients with CD and 21 healthy controls. Regions showing abnormal FCs from two measurements were the regions of interest for correlation analyses. Results Compared with healthy controls, patients with CD exhibited significantly decreased VMHC in the supplementary motor area (SMA), precuneus (PCu)/postcentral gyrus, and superior medial prefrontal cortex (MPFC). Significantly increased degree centrality in the right PCu and decreased degree centrality in the right lentiform nucleus and left ventral MPFC were observed in the patient group compared with the control group. Further correlation analyses showed that the VMHC values in the SMA were negatively correlated with dystonia severity. Conclusion Local abnormalities and interhemispheric interaction deficits in the sensorimotor network (SMA, postcentral gyrus, and PCu), default mode network (MPFC and PCu), and basal ganglia may be the key characteristics in the pathogenesis mechanism of CD.
Collapse
|
24
|
Puche Sarmiento AC, Bocanegra García Y, Ochoa Gómez JF. Active information storage in Parkinson's disease: a resting state fMRI study over the sensorimotor cortex. Brain Imaging Behav 2019; 14:1143-1153. [PMID: 30684153 DOI: 10.1007/s11682-019-00037-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD), the second most frequent neurodegenerative disease, affects significantly life quality by a combination of motor and cognitive disturbances. Although it is traditionally associated with basal ganglia dysfunction, cortical alterations are also involved in disease symptoms. Our objective is to evaluate the alterations in brain dynamics in de novo and recently treated PD subjects using a nonlinear method known as Active Information Storage. In the current research, Active Information Storage (AIS) was used to study the complex dynamics in motor cortex spontaneous activity captured using resting state functional Magnetic Resonance Imaging (rs-fMRI) at early-stage in non-medicated and recently medicated PD subjects. Supplementary to AIS, the fractional Amplitude of Low Frequency Fluctuation (fALFF), which is a better-established technique of analysis of rs-fMRI signals, was also evaluated. Compared to healthy subjects, the AIS values were significantly reduced in PD patients over the analyzed motor cortex regions; differences were also found at less extent using the fALFF measure. Correlations between AIS and fALFF values showed that the measures seem to capture similar neuronal phenomena in rs-fMRI data. The highest sensitivity when detecting group differences revealed by AIS, and not captured by traditional linear approaches, suggests that this measure is a promising tool for the analysis of rs-fMRI neural data in PD.
Collapse
Affiliation(s)
- Aura Cristina Puche Sarmiento
- Grupo de Investigación en Bioinstrumentación e Ingeniería Clínica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-11, 050010, Medellín, Colombia.
| | - Yamile Bocanegra García
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-11, Medellín, Colombia.,Grupo Neuropsicología y Conducta, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-11, Medellín, Colombia
| | - John Fredy Ochoa Gómez
- Grupo de Investigación en Bioinstrumentación e Ingeniería Clínica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-11, 050010, Medellín, Colombia
| |
Collapse
|
25
|
Xiang CQ, Liu WF, Xu QH, Su T, Yong-Qiang S, Min YL, Yuan Q, Zhu PW, Liu KC, Jiang N, Ye L, Shao Y. Altered Spontaneous Brain Activity in Patients with Classical Trigeminal Neuralgia Using Regional Homogeneity: A Resting-State Functional MRI Study. Pain Pract 2019; 19:397-406. [PMID: 30536573 DOI: 10.1111/papr.12753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neuroimaging studies have shown that patients with pain-related conditions have altered neuronal activity and structural functions. The purpose of this study was to investigate whether patients with classical trigeminal neuralgia (CTN) exhibit changes in corresponding neuronal activity via analysis of neuronal activity regional homogeneity (ReHo). METHODS A total of 28 patients presenting with sore eyes (12 men and 16 women) were matched with 28 healthy controls (12 men and 16 women). All participants underwent functional magnetic resonance imaging (fMRI). This ReHo method was used to assess the consistency of changes in neural activity in various brain regions. The receiver operating characteristic (ROC) curve was applied to differentiate ReHo values of patients with CTN from ReHo values of healthy controls. Pearson's correlation analysis was applied to evaluate the correlation between ReHo values of different brain regions of patients with CTN and clinical manifestations. RESULTS Compared with healthy controls, patients with CTN were found to have increased ReHo values in the inferior cerebellum bilaterally, right inferior temporal gyrus, right middle occipital gyrus, right fusiform gyrus, right superior frontal gyrus, and right precentral gyrus. ROC curve analysis of each brain region revealed near-perfect accuracy regarding the area under the curve. However, no correlation between ReHo values and clinical manifestations in patients with CTN was found. CONCLUSIONS CTN is associated with altered neuronal networks in different areas of the brain. ReHo values all possess different degrees of change, implying that CTN has a certain impact on cerebral function.
Collapse
Affiliation(s)
- Chu-Qi Xiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Qian-Hui Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Ting Su
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian, China
| | - Shu Yong-Qiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Kang-Cheng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Nan Jiang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Harrington DL, Shen Q, Theilmann RJ, Castillo GN, Litvan I, Filoteo JV, Huang M, Lee RR. Altered Functional Interactions of Inhibition Regions in Cognitively Normal Parkinson's Disease. Front Aging Neurosci 2018; 10:331. [PMID: 30405399 PMCID: PMC6206214 DOI: 10.3389/fnagi.2018.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022] Open
Abstract
Deficient inhibitory control in Parkinson's disease (PD) is often observed in situations requiring inhibition of impulsive or prepotent behaviors. Although activation of the right-hemisphere frontal-basal ganglia response inhibition network is partly altered in PD, disturbances in interactions of these regions are poorly understood, especially in patients without cognitive impairment. The present study investigated context-dependent connectivity of response inhibition regions in PD patients with normal cognition and control participants who underwent fMRI while performing a stop signal task. PD participants were tested off antiparkinsonian medication. To determine if functional disturbances depended on underlying brain structure, aberrant connectivity was correlated with brain volume and white-matter tissue diffusivity. We found no group differences in response inhibition proficiency. Yet the PD group showed functional reorganization in the long-range connectivity of inhibition regions, despite preserved within network connectivity. Successful inhibition in PD differed from the controls by strengthened connectivity of cortical regions, namely the right dorsolateral prefrontal cortex, pre-supplementary motor area and right caudal inferior frontal gyrus, largely with ventral and dorsal attention regions, but also the substantia nigra and default mode network regions. Successful inhibition in controls was distinguished by strengthened connectivity of the right rostral inferior frontal gyrus and subcortical inhibition nodes (right caudate, substantia nigra, and subthalamic nucleus). In both groups, the strength of context-dependent connectivity correlated with various indices of response inhibition performance. Mechanisms that may underlie aberrantly stronger context-specific connectivity include reduced coherence within reorganized systems, compensatory mechanisms, and/or the reorganization of intrinsic networks. In PD, but not controls, abnormally strengthened connectivity was linked to individual differences in underlying brain volumes and tissue diffusivity, despite no group differences in structural variables. The pattern of structural-functional associations suggested that subtle decreases in tissue diffusivity of underlying tracts and posterior cortical volumes may undermine the enhancement of normal cortical-striatal connectivity or cause strengthening in cortical-cortical connectivity. These novel findings demonstrate that functionally reorganized interactions of inhibition regions predates the development of inhibition deficits and clinically significant cognitive impairment in PD. We speculate that altered interactions of inhibition regions with attention-related networks and the dopaminergic system may presage future decline in inhibitory control.
Collapse
Affiliation(s)
- Deborah L. Harrington
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Qian Shen
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Rebecca J. Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel N. Castillo
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - J. Vincent Filoteo
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Mingxiong Huang
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, United States
| | - Roland R. Lee
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
27
|
Distinct manifestation of cognitive deficits associate with different resting-state network disruptions in non-demented patients with Parkinson’s disease. J Neurol 2018; 265:688-700. [DOI: 10.1007/s00415-018-8755-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
|