1
|
Okagu IU, Akerele OA, Fillier T, Pham TH, Thomas R, Wilson KA, Cheema SK. Maternal omega-3 polyunsaturated fatty acids improved levels of DHA-enriched phosphatidylethanolamines and enriched lipid clustering in the neuronal membranes of C57BL/6 mice fetal brains during gestation. J Nutr Biochem 2025; 140:109891. [PMID: 40049245 DOI: 10.1016/j.jnutbio.2025.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
The composition of brain lipids is crucial for neurodevelopment and brain function. Diets enriched in omega (n)-3 polyunsaturated fatty acids (PUFA) can modulate brain lipid composition. However, the influence of maternal n-3 PUFA intake on fetal brain lipidome and neuronal membrane structure during gestation is not well studied. Eight-week-old female C57BL/6 mice were fed low or high n-3 PUFA semi-purified diets for two weeks before mating and during gestation. Fetal brain lipidome and neuronal membrane structure were studied at gestation day (GD) 12.5 (mid) and 18.5 (late) using liquid chromatography high-resolution accurate mass tandem mass spectrometry and computational techniques. Maternal diets high in n-3 PUFA increased fetal brain total phosphoethanolamine, phosphoinositol, phosphoglycerol, and phosphoserine glycerophospholipids, compared to the low n-3 PUFA diet. Docosahexaenoic acid (DHA, 22:6n-3)-enriched phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and lyso-PC (LPC) fatty acyl species increased as gestation progressed in the high n-3 PUFA group, compared to low n-3 PUFA. These fatty acyl species and phospholipids promote neurotransmission, memory, and cognition. A high n-3 PUFA diet increased the area per lipid in fetal neuronal membranes as gestation progressed, indicating improved membrane fluidity. Furthermore, a high n-3 PUFA diet increased the clustering of membrane lipids associated with neurotransmission, memory, and cognition (ceramide, PE, and cholesteryl ester) as gestation progressed. Our findings show for the first time that maternal diets high in n-3 PUFA before and during gestation improve fetal brain lipidome and membrane area per lipid that may enhance brain development and function.
Collapse
Affiliation(s)
| | | | - Tiffany Fillier
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada; Department of Biology/Biotron Experimental Climate Change Research Centre, Western University, London, Canada
| | - Katie A Wilson
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada.
| |
Collapse
|
2
|
Li Y, Chen Z, Huang Z, Wang J, Wang J, Lin L, Lin R, Lai J, Zhang L, Qiu S. Causal association between blood metabolites and head and neck cancer: butyrylcarnitine identified as an associated trait for cancer risk and progression. Hereditas 2025; 162:36. [PMID: 40087718 PMCID: PMC11907814 DOI: 10.1186/s41065-025-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Blood metabolites play an important role in predicting or influencing the occurrence and development of cancers. We aimed to evaluate the relationship between blood metabolites and the occurrence of head and neck cancer (HNC). METHODS We employed a Mendelian randomization (MR) approach to investigate the role of blood metabolites in HNC predisposition. The HNC cell line HN30 was treated with butyrylcarnitine, the metabolite identified through MR analysis, and subjected to a series of cellular assays to assess its potential carcinogenic effects. RESULTS Among the 258 blood metabolites analyzed, butyrylcarnitine emerged as the only metabolite demonstrating a potential causal association with HNC risk following Bonferroni correction (inverse-variance-weighted MR method: β = 0.904, P < 0.001). Genetically predicted higher levels of butyrylcarnitine (log-transformed) were causally linked to an increased risk of HNC (OR: 2.470, 95% CI: 1.530-3.987). Sensitivity analyses, including MR-Egger regression, leave-one-out analysis, and funnel plots, confirmed the robustness of the findings, with no evidence of directional pleiotropy. In vitro experiments further demonstrated that butyrylcarnitine promoted the proliferation, migration and invasion of HN30 cells. CONCLUSIONS By employing a genetic epidemiological framework, our research assessed the impact of metabolite butyrylcarnitine on HNC susceptibility. These findings offer valuable insights into potential therapeutic targets and highlight the promise of targeted metabolic strategies for reducing HNC risk. Nevertheless, further research is required to elucidate the precise biological mechanisms underlying these findings.
Collapse
Affiliation(s)
- Ying Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Zihan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Zongwei Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Jing Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Jue Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Lanxin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Ruyu Lin
- Fujian Medical University, Fujian, China
| | - Jinghua Lai
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Libin Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China.
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China.
- Fujian Key Laboratory of Translational Cancer Medicine, Fujian, China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian, China.
| |
Collapse
|
3
|
Wu S, Panganiban KJ, Lee J, Li D, Smith EC, Maksyutynska K, Humber B, Ahmed T, Agarwal SM, Ward K, Hahn M. Peripheral Lipid Signatures, Metabolic Dysfunction, and Pathophysiology in Schizophrenia Spectrum Disorders. Metabolites 2024; 14:475. [PMID: 39330482 PMCID: PMC11434505 DOI: 10.3390/metabo14090475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction is commonly observed in schizophrenia spectrum disorders (SSDs). The causes of metabolic comorbidity in SSDs are complex and include intrinsic or biological factors linked to the disorder, which are compounded by antipsychotic (AP) medications. The exact mechanisms underlying SSD pathophysiology and AP-induced metabolic dysfunction are unknown, but dysregulated lipid metabolism may play a role. Lipidomics, which detects lipid metabolites in a biological sample, represents an analytical tool to examine lipid metabolism. This systematic review aims to determine peripheral lipid signatures that are dysregulated among individuals with SSDs (1) with minimal exposure to APs and (2) during AP treatment. To accomplish this goal, we searched MEDLINE, Embase, and PsychINFO databases in February 2024 to identify all full-text articles written in English where the authors conducted lipidomics in SSDs. Lipid signatures reported to significantly differ in SSDs compared to controls or in relation to AP treatment and the direction of dysregulation were extracted as outcomes. We identified 46 studies that met our inclusion criteria. Most of the lipid metabolites that significantly differed in minimally AP-treated patients vs. controls comprised glycerophospholipids, which were mostly downregulated. In the AP-treated group vs. controls, the significantly different metabolites were primarily fatty acyls, which were dysregulated in conflicting directions between studies. In the pre-to-post AP-treated patients, the most impacted metabolites were glycerophospholipids and fatty acyls, which were found to be primarily upregulated and conflicting, respectively. These lipid metabolites may contribute to SSD pathophysiology and metabolic dysfunction through various mechanisms, including the modulation of inflammation, cellular membrane permeability, and metabolic signaling pathways.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Kristoffer J. Panganiban
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Dan Li
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
| | - Emily C.C. Smith
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Kateryna Maksyutynska
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Bailey Humber
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Tariq Ahmed
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4,Canada
| | - Kristen Ward
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Michigan Medicine Health System, Ann Arbor, MI 48109, USA
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4,Canada
| |
Collapse
|
4
|
Mourino-Alvarez L, Juarez-Alia C, Sastre-Oliva T, Perales-Sánchez I, Hernandez-Fernandez G, Chicano-Galvez E, Peralbo-Molina Á, Madruga F, Blanco-Lopez E, Tejerina T, Barderas MG. Dysregulation of Lipid Metabolism Serves as A Link Between Alzheimer's and Cardiovascular Disease, As Witnessed in A Cross-Sectional Study. Aging Dis 2024:AD.2024.0434. [PMID: 39012677 DOI: 10.14336/ad.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular risk factors and established cardiovascular disease (CVD) increase the risk of suffering dementia of the Alzheimer's type (DAT). Here, we set out to define specific molecular profiles of CVD in patients with DAT to better understand its relationship, to unravel the mechanisms underlying the high risk of developing DAT in CVD patients and to define new markers of early disease. Plasma samples from patients with DAT, with and without CVD, were analyzed through a multiomics approach, with integration of metabolomics and proteomics datasets using the OmicsNet web-based tool. Metabolomics results showed an enrichment in lipids and lipid-like molecules. Similarly, the most significant cluster identified through proteomics was formed by 5 proteins related to lipoprotein and cholesterol metabolism. After integration and functional enrichment, glycerolipid metabolism, fatty acid degradation and sphingolipid metabolism were among the most significant functions. Finally, differential expression of ABCA1 and APOH proteins was verified, in an independent cohort also including controls and patients with CVD alone. Both proteins positively correlated with phospho-Tau (181), a classical hallmark of DAT. Different molecular profiles exist in patients with DAT, with and without CVD, with exacerbated alterations in patients in which DAT and CVD co-exist. This information may help to define biomarkers like ABCA1 and APOH that identify patients with cardiovascular dysfunction that are at high risk of developing DAT. Such markers will allow more personalized interventions to be selected, a further step towards precision medicine for individuals whose molecular profiles indicate a distinct response to the same management strategies.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Inés Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Ángela Peralbo-Molina
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Felipe Madruga
- Departament of Geriatrics, Hospital Virgen del Valle, SESCAM, Toledo, Spain
| | - Emilio Blanco-Lopez
- Department of Cardiology, Ciudad Real General University Hospital, Ciudad Real, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| |
Collapse
|
5
|
Healy DR, Zarei I, Mikkonen S, Soininen S, Viitasalo A, Haapala EA, Auriola S, Hanhineva K, Kolehmainen M, Lakka TA. Longitudinal associations of an exposome score with serum metabolites from childhood to adolescence. Commun Biol 2024; 7:890. [PMID: 39039257 PMCID: PMC11263428 DOI: 10.1038/s42003-024-06146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/05/2024] [Indexed: 07/24/2024] Open
Abstract
Environmental and lifestyle factors, including air pollution, impaired diet, and low physical activity, have been associated with cardiometabolic risk factors in childhood and adolescence. However, environmental and lifestyle exposures do not exert their physiological effects in isolation. This study investigated associations between an exposome score to measure the impact of multiple exposures, including diet, physical activity, sleep duration, air pollution, and socioeconomic status, and serum metabolites measured using LC-MS and NMR, compared to the individual components of the score. A general population of 504 children aged 6-9 years at baseline was followed up for eight years. Data were analysed with linear mixed-effects models using the R software. The exposome score was associated with 31 metabolites, of which 12 metabolites were not associated with any individual exposure category. These findings highlight the value of a composite score to predict metabolic changes associated with multiple environmental and lifestyle exposures since childhood.
Collapse
Affiliation(s)
- Darren R Healy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland.
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio Campus, Finland
| | - Sonja Soininen
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Timo A Lakka
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
6
|
Huang Y, Li N, Yang C, Lin Y, Wen Y, Zheng L, Zhao C. Honeybee as a food nutrition analysis model of neural development and gut microbiota. Neurosci Biobehav Rev 2023; 153:105372. [PMID: 37652394 DOI: 10.1016/j.neubiorev.2023.105372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Research on the relationships between the gut microbiota and the neurophysiology and behavior of animals has grown exponentially in just a few years. Insect behavior may be controlled by molecular mechanisms that are partially homologous to those in mammals, and swarming insects may be suitable as experiment models in these types of investigations. All core gut bacteria in honeybees can be cultivated in vitro. Certain gut microflora of bees can be genetically engineered or sterilized and colonized. The bee gut bacteria model is established more rapidly and has a higher flux than other sterile animal models. It may help elucidate the pathogenesis of intestinal diseases and identify effective molecular therapeutic targets against them. In the present review, we focused on the contributions of the honeybee model in learning cognition and microbiome research. We explored the relationship between honeybee behavior and neurodevelopment and the factors determining the mechanisms by which the gut microbiota affects the host. In particular, we concentrated on the correlation between gut microbiota and brain development. Finally, we examined strategies for the effective use of simple animal models in animal cognition and microbiome research.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Lin
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Norman JE, Nuthikattu S, Milenkovic D, Villablanca AC. Sex Modifies the Impact of Type 2 Diabetes Mellitus on the Murine Whole Brain Metabolome. Metabolites 2023; 13:1012. [PMID: 37755291 PMCID: PMC10536706 DOI: 10.3390/metabo13091012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) leads to the development of cardiovascular diseases, cognitive impairment, and dementia. There are sex differences in the presentation of T2DM and its associated complications. We sought to determine the impact of sex and T2DM on the brain metabolome to gain insights into the underlying mechanisms of T2DM-associated cognitive complications. Untargeted metabolomic analysis was performed, using liquid chromatography-mass spectrometry, on whole brain tissue from adult male and female db/db mice (a T2DM model) compared to wild-type (WT) C57Bl6/J mice. Regardless of sex, T2DM increased free fatty acids and decreased acylcarnitines in the brain. Sex impacted the number (103 versus 65 in males and females, respectively), and types of metabolites shifted by T2DM. Many choline-containing phospholipids were decreased by T2DM in males. Female-specific T2DM effects included changes in neuromodulatory metabolites (γ-aminobutyric acid, 2-linoleoyl glycerol, N-methylaspartic acid, and taurine). Further, there were more significantly different metabolites between sexes in the T2DM condition as compared to the WT controls (54 vs. 15 in T2DM and WT, respectively). T2DM alters the murine brain metabolome in both sex-independent and sex-dependent manners. This work extends our understanding of brain metabolic sex differences in T2DM, cognitive implications, and potential sex-specific metabolic therapeutic targets.
Collapse
Affiliation(s)
- Jennifer E. Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA; (S.N.); (A.C.V.)
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA; (S.N.); (A.C.V.)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA;
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA; (S.N.); (A.C.V.)
| |
Collapse
|
8
|
Pipingas A, Reddan JM, Gauci S, Young LM, Kennedy G, Rowsell R, King R, Spiteri S, Minihane AM, Scholey A. Post-Prandial Cognitive and Blood Pressure Effects of a DHA-Rich Omega-3 Powder in Middle-Aged Males: A Pilot Study. Nutrients 2023; 15:2198. [PMID: 37432363 DOI: 10.3390/nu15092198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
The use of omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements is increasingly common among middle-aged and older adults. Users of ω-3 PUFA supplements often report using such supplements to support cognitive health, despite mixed findings reported within the ω-3 PUFA literature. To date, very few studies have explored cognitive effects in distinctly middle-aged (40 to 60 years) adults, and none have examined the acute effects (in the hours following a single dose) on cognitive performance. The current study evaluated whether a single dose of ω-3 PUFA (4020 mg docosahexaenoic acid and 720 mg eicosapentaenoic acid) influences cognitive performance and cardiovascular function in middle-aged males. Cognitive performance and cardiovascular function were assessed before and 3.5-4 h after consumption of a high dose of ω-3 PUFA (DHA + EPA) or placebo, incorporated into a standardized meal (i.e., single serve of Greek yogurt). In this study of middle-aged males, no significant differential treatment effects were observed for cognitive performance. However, a significant reduction in aortic systolic blood pressure (pre-dose to post-dose) was apparent following consumption of the ω-3 PUFA (DHA + EPA) treatment (mean difference = -4.11 mmHg, p = 0.004) but not placebo (mean difference = -1.39 mmHg, p = 0.122). Future replication in a sample comprising females, as well as patients with hypertension, is merited.
Collapse
Affiliation(s)
- Andrew Pipingas
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jeffery Michael Reddan
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sarah Gauci
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lauren M Young
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Greg Kennedy
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Renee Rowsell
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Rebecca King
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sam Spiteri
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Andrew Scholey
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia
| |
Collapse
|
9
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Du Preez A, Lefèvre-Arbogast S, González-Domínguez R, Houghton V, de Lucia C, Low DY, Helmer C, Féart C, Delcourt C, Proust-Lima C, Pallàs M, Sánchez-Pla A, Urpi-Sardà M, Ruigrok SR, Altendorfer B, Aigner L, Lucassen PJ, Korosi A, Manach C, Andres-Lacueva C, Samieri C, Thuret S. Impaired hippocampal neurogenesis in vitro is modulated by dietary-related endogenous factors and associated with depression in a longitudinal ageing cohort study. Mol Psychiatry 2022; 27:3425-3440. [PMID: 35794184 PMCID: PMC7613865 DOI: 10.1038/s41380-022-01644-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/19:1), levels - both of which are closely linked to diet - all in the context of depressive symptomology. These findings potentially suggest that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.
Collapse
Affiliation(s)
- Andrea Du Preez
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9NU UK
| | - Sophie Lefèvre-Arbogast
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Raúl González-Domínguez
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Vikki Houghton
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9NU UK
| | - Chiara de Lucia
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9NU UK
| | - Dorrain Y. Low
- Université Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, F-63000 Clermont Ferrand, France
| | - Catherine Helmer
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Catherine Féart
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Delcourt
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Proust-Lima
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Mercè Pallàs
- grid.5841.80000 0004 1937 0247Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Alex Sánchez-Pla
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Mireia Urpi-Sardà
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Silvie R. Ruigrok
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Barbara Altendorfer
- grid.21604.310000 0004 0523 5263Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Ludwig Aigner
- grid.21604.310000 0004 0523 5263Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Paul J. Lucassen
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Claudine Manach
- Université Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, F-63000 Clermont Ferrand, France
| | - Cristina Andres-Lacueva
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Cécilia Samieri
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK. .,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Gauci S, Young LM, White DJ, Reddan JM, Lassemillante AC, Meyer D, Pipingas A, Scholey A. Diet May Moderate the Relationship Between Arterial Stiffness and Cognitive Performance in Older Adults. J Alzheimers Dis 2021; 85:815-828. [PMID: 34864661 PMCID: PMC8842781 DOI: 10.3233/jad-210567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cognitive decline is influenced by various factors including diet, cardiovascular disease, and glucose control. However, the combined effect of these risk factors on cognitive performance is yet to be fully understood. OBJECTIVE The current study aimed to explore the inter-relationship between these risk factors and cognitive performance in older adults at risk of future cognitive decline. METHODS The sample comprised 163 (Age: M = 65.23 years, SD = 6.50) participants. Food Frequency Questionnaire data was used to score diet quality and adherence to the Western Style Diet (WSD) and Prudent Style Diet (PSD). Glucose control was gauged by serum levels of glycated hemoglobin (HbA1c) and arterial stiffness was measured using carotid to femoral pulse wave velocity. Cognitive performance was assessed using two subtests of the Swinburne University Computerized Cognitive Assessment Battery (SUCCAB) and Rey's Verbal Learning Test (RVLT). RESULTS Diet quality, adherence to the WSD or PSD, and glucose control were not significantly related to cognitive outcomes. However, a significant negative association was found between arterial stiffness and the spatial working memory subtest of SUCCAB (β= -0.21, p < 0.05). Arterial stiffness also significantly interacted with the PSD to impact total recall (F change (1,134) = 5.37, p < 0.05) and the composite score of RVLT (F change (1,134) = 4.03, p < 0.05). CONCLUSION In this sample of older adults at risk of cognitive decline, diet alone was not found to predict cognitive performance; however, it was found to moderate the relationship between arterial stiffness and cognition.
Collapse
Affiliation(s)
- Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia.,Heart and Mind Research, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Lauren M Young
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia.,Food and Mood Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Jeffery M Reddan
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Annie-Claude Lassemillante
- Department of Nursing and Allied Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Denny Meyer
- Department of Health Science and Biostatistics, Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia.,Nutrition Dietetics and Food, School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Li L, Solvi C, Zhang F, Qi Z, Chittka L, Zhao W. Gut microbiome drives individual memory variation in bumblebees. Nat Commun 2021; 12:6588. [PMID: 34824201 PMCID: PMC8616916 DOI: 10.1038/s41467-021-26833-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The potential of the gut microbiome as a driver of individual cognitive differences in natural populations of animals remains unexplored. Here, using metagenomic sequencing of individual bumblebee hindguts, we find a positive correlation between the abundance of Lactobacillus Firm-5 cluster and memory retention on a visual discrimination task. Supplementation with the Firm-5 species Lactobacillus apis, but not other non-Firm-5 bacterial species, enhances bees' memory. Untargeted metabolomics after L. apis supplementation show increased LPA (14:0) glycerophospholipid in the haemolymph. Oral administration of the LPA increases long-term memory significantly. Based on our findings and metagenomic/metabolomic analyses, we propose a molecular pathway for this gut-brain interaction. Our results provide insights into proximate and ultimate causes of cognitive differences in natural bumblebee populations.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cwyn Solvi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Feng Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaoyang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lars Chittka
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
13
|
Giannenas I, Grigoriadou K, Sidiropoulou E, Bonos E, Cheilari A, Vontzalidou A, Karaiskou C, Aligiannis N, Florou-Paneri P, Christaki E. Untargeted UHPLC-MS metabolic profiling as a valuable tool for the evaluation of eggs quality parameters after dietary supplementation with oregano, thyme, sideritis tea and chamomile on brown laying hens. Metabolomics 2021; 17:51. [PMID: 34021818 DOI: 10.1007/s11306-021-01801-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive constituents of medicinal-aromatic plants used as feed additives may affect the metabolic profile and oxidative stability of hen eggs. OBJECTIVES To determine the effects of dietary supplementation with a mixture of dried oregano, thyme, sideritis tea and chamomile on laying hen performance, egg quality parameters, and oxidative stability in the egg yolk were monitored. METHODS In this trial 432 hens were allocated in two treatments (unsupplemented vs. supplemented with the mixture) and fed for 42 days. Eggs were collected at the end of the trial period, egg yolk was separated, extracted, and the total phenolic content (TPC) and oxidative stability was measured. Furthermore, LC-MS metabolic profile of eggs was studied and pathway analysis was elaborated in MetaboAnalyst to facilitate annotation of features. RESULTS Overall, egg production and feed conversion ratio were not affected by the supplementation. However, eggs from the supplemented treatment showed improved shell thickness and strength, and yolk resistance to oxidation. Moreover, LC-MS metabolomic analysis of egg yolk of supplemented and unsupplemented layers showed significant variations and tight clustering in unsupervised principal component analysis due to different chemical profiling of egg yolk. LC-MS study showed that secondary metabolites of aromatic plants did not transfer into yolk, nevertheless the feed supplementation impacted the pathway metabolism of tyrosine, phenylalanine, propanate, and the biosynthesis of aminoacyl-tRNA, phenylalanine, tyrosine and tryptophan. CONCLUSIONS The dietary supplementation of layers with a mixture of dried medicinal aromatic plants affected shell thickness and strength, the lipid and protein oxidative stability and increased tyrosine and phenylalanine content in eggs.
Collapse
Affiliation(s)
- Ilias Giannenas
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece.
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization - DEMETER, P.O. Box 60458, Thermi, 570 01, Thessaloniki, Greece
- ELVIZ Hellenic Feedstuff Industry S.A, 59300, Plati-Imathia, Greece
| | - Erasmia Sidiropoulou
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Eleftherios Bonos
- Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi, 47100, Artas, Greece
| | - Antigoni Cheilari
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Argyro Vontzalidou
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Chrisoula Karaiskou
- Laboratory of Animal Husbandry, School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
| | - Nektarios Aligiannis
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Panagiota Florou-Paneri
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Efterpi Christaki
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| |
Collapse
|
14
|
Miller MR, Robinson M, Bartha R, Charyk Stewart T, Fischer L, Dekaban GA, Menon RS, Shoemaker JK, Fraser DD. Concussion Acutely Decreases Plasma Glycerophospholipids in Adolescent Male Athletes. J Neurotrauma 2021; 38:1608-1614. [PMID: 33176582 DOI: 10.1089/neu.2020.7125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Concussions are frequent in sports and can contribute to significant and long-lasting neurological disability. Adolescents are particularly susceptible to concussions, with accurate determination of the injury challenging. Our previous study demonstrated that concussion diagnoses could be aided by metabolomics profiling and machine learning, with particular weighting on changes in plasma glycerophospholipids (PCs). Here, our aim was to report directional change of PCs after concussion and develop a diagnostic concussion panel utilizing a minimum number of plasma PCs. To this end, we enrolled 12 concussed male athletes at our academic Sport Medicine Concussion Clinic, as well as 17 sex-, age-, and activity-matched healthy controls. Blood was drawn and 71 plasma PCs were measured for statistically significant changes within 72 h of injury, and individual PCs were further analyzed with receiver operating characteristic (ROC) curves. Our data demonstrated that 26 of 71 PCs measured were significantly decreased after sports-related concussion (p < 0.01). None of the PCs increased in plasma after concussion. ROC curve analyses identified the top four PCs with areas under the curve (AUCs) ≥0.86 for concussion diagnosis: PCaeC36:0 (0.92; p < 0.001); PCaaC42:6 (0.90; p < 0.001); PCaeC36:2 (0.86; p = 0.001), and PCaaC32:0 (0.86; p = 0.001). Cut-off values in μM were ≤0.31, 0.22, 5.07, and 4.63, respectively. Importantly, combining these four PCs produced an AUC of 0.96 for concussion diagnoses (p < 0.001; 95% confidence interval, 0.89, 1.00). Our data suggest that as few as four circulating PCs may provide excellent diagnostic potential for adolescent concussion. External validation is required in larger cohorts.
Collapse
Affiliation(s)
- Michael R Miller
- Pediatrics, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | | | - Robert Bartha
- Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | | | - Lisa Fischer
- Family Medicine, Western University, London, Ontario, Canada
| | - Gregory A Dekaban
- Microbiology and Immunology, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Ravi S Menon
- Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | | | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada.,Physiology and Pharmacology, Western University, London, Ontario, Canada.,Clinical Neurological Sciences, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Neurolytixs, Inc., Toronto, Ontario, Canada
| |
Collapse
|
15
|
Alassane-Kpembi I, Canlet C, Tremblay-Franco M, Jourdan F, Chalzaviel M, Pinton P, Cossalter AM, Achard C, Castex M, Combes S, Bracarense APL, Oswald IP. 1H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol: Effect of probiotics supplementation. Food Chem Toxicol 2020; 138:111222. [PMID: 32145353 DOI: 10.1016/j.fct.2020.111222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/18/2023]
Abstract
Low-level contamination of food and feed by deoxynivalenol (DON) is unavoidable. We investigated the effects of subclinical treatment with DON, and supplementation with probiotic yeast Saccharomyces cerevisiae boulardii I1079 as a preventive strategy in piglets. Thirty-six animals were randomly assigned to either a control diet, a diet contaminated with DON (3 mg/kg), a diet supplemented with yeast (4 × 109 CFU/kg), or a DON-contaminated diet supplemented with yeast, for four weeks. Plasma and tissue samples were collected for biochemical analysis,1H-NMR untargeted metabolomics, and histology. DON induced no significant modifications in biochemical parameters. However, lesion scores were higher and metabolomics highlighted alterations of amino acid and 2-oxocarboxylic acid metabolism. Administering yeast affected aminoacyl-tRNA synthesis and amino acid and glycerophospholipid metabolism. Yeast supplementation of piglets exposed to DON prevented histological alterations, and partial least square discriminant analysis emphasised similarity between the metabolic profiles of their plasma and that of the control group. The effect on liver metabolome remained marginal, indicating that the toxicity of the mycotoxin was not eliminated. These findings show that the 1H-NMR metabolomics profile is a reliable biomarker to assess subclinical exposure to DON, and that supplementation with S. cerevisiae boulardii increases the resilience of piglets to this mycotoxin.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Université D'Abomey-Calavi, Ecole Polytechnique D'Abomey, Calavi, Benin.
| | - Cecile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | | | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Anne Marie Cossalter
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Caroline Achard
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France.
| | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France.
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France.
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
16
|
Examining the relationship between nutrition and cerebral structural integrity in older adults without dementia. Nutr Res Rev 2018; 32:79-98. [PMID: 30378509 DOI: 10.1017/s0954422418000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proportion of adults aged 60 years and over is expected to increase over the coming decades. This ageing of the population represents an important health issue, given that marked reductions to cerebral macro- and microstructural integrity are apparent with increasing age. Reduced cerebral structural integrity in older adults appears to predict poorer cognitive performance, even in the absence of clinical disorders such as dementia. As such, it is becoming increasingly important to identify those factors predicting cerebral structural integrity, especially factors that are modifiable. One such factor is nutritional intake. While the literature is limited, data from available cross-sectional studies indicate that increased intake of nutrients such as B vitamins (for example, B6, B12 and folate), choline, n-3 fatty acids and vitamin D, or increased adherence to prudent whole diets (for example, the Mediterranean diet) predicts greater cerebral structural integrity in older adults. There is even greater scarcity of randomised clinical trials investigating the effects of nutritional supplementation on cerebral structure, though it appears that supplementation with B vitamins (B6, B12 and folic acid) or n-3 fatty acids (DHA or EPA) may be beneficial. The current review presents an overview of available research examining the relationship between key nutrients or adherence to select diets and cerebral structural integrity in dementia-free older adults.
Collapse
|