1
|
Maimaitiaili S, Tang C, Liu C, Lv X, Chen Z, Zhang M, Cai J, Liang Z, Zhao B, Zhang W, Qiao T. Alterations in brain morphology and functional connectivity mediate cognitive decline in carotid atherosclerotic stenosis. Front Aging Neurosci 2024; 16:1395911. [PMID: 38974904 PMCID: PMC11225314 DOI: 10.3389/fnagi.2024.1395911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.
Collapse
Affiliation(s)
- Subinuer Maimaitiaili
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chen Tang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cheng Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaochen Lv
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengqiang Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zishun Liang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Biao Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Zhang Z, Jin P, Guo Z, Tu Z, Yang H, Hu M, Li Q, Liu X, Li W, Hou S. Integrated Analysis of Chromatin and Transcriptomic Profiling Identifies PU.1 as a Core Regulatory Factor in Microglial Activation Induced by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2024; 61:2569-2589. [PMID: 37917300 PMCID: PMC11043206 DOI: 10.1007/s12035-023-03734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
In addition to causing white matter lesions, chronic cerebral hypoperfusion (CCH) can also cause damage to gray matter, but the underlying molecular mechanisms remain largely unknown. In order to obtain a better understanding of the relationship between gene expression and transcriptional regulation alterations, novel upstream regulators could be identified using integration analysis of the transcriptome and epigenetic approaches. Here, a bilateral common carotid artery stenosis (BCAS) model was established for inducing CCH in mice. The spatial cognitive function of mice was evaluated, and changes in cortical microglia morphology were observed. RNA-sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed on isolated mouse cortical brain tissue. Then, a systematic joint analysis of BCAS hypoperfusion-induced cortex-specific RNA-seq and ATAC-seq was conducted in order to assess the extent of the correlation between the two, and PU.1 was found to be greatly enriched through motif analysis and transcription factor annotation. Also, the core regulatory factor PU.1 induced by BCAS hypoperfusion was shown to be colocalized with microglia. Based on the above analysis, PU.1 plays a key regulatory role in microglial activation induced by CCH. And the transcriptome and epigenomic data presented in this study can help identify potential targets for future research exploring chronic hypoperfusion-induced brain injury.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengpeng Jin
- Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zimin Guo
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qinghua Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Weiwei Li
- Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, China.
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Huang YT, Hong FF, Yang SL. Atherosclerosis: The Culprit and Co-victim of Vascular Dementia. Front Neurosci 2021; 15:673440. [PMID: 34421513 PMCID: PMC8377286 DOI: 10.3389/fnins.2021.673440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular dementia (VD), a cerebrovascular disease which causes cognitive impairment, is one of the significant factors that affects the quality of senectitude. Atherosclerosis (AS) is a chronic inflammatory syndrome and closely associated with VD. Analyzing the role of AS in VD contribute greatly to its early detection and prevention, but their relationship has not been integrated into a complete network. This review summarizes AS biomarkers as VD predictors for the first time and describes the direct mechanisms of AS causing VD from five aspects: vascular morphogenesis, hemodynamic change, neurovascular unit damage (NVU), oxidative stress, and microRNA (miRNA). Finally, it discriminates the relationship between AS and VD in common risk factors which can be disease or some molecules. In particular, these data imply that the role of AS in VD is not only a pathogenic factor but also a comorbidity in VD. This review aims to bring new ideas for the prediction and treatment of VD.
Collapse
Affiliation(s)
- Ya-Ting Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Queen Marry College, School of Medicine, Nanchang University, Nanchang, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Department of Physiology, Fuzhou Medical College, Fuzhou, China
| |
Collapse
|
4
|
de Montgolfier O, Thorin-Trescases N, Thorin E. Pathological Continuum From the Rise in Pulse Pressure to Impaired Neurovascular Coupling and Cognitive Decline. Am J Hypertens 2020; 33:375-390. [PMID: 32202623 PMCID: PMC7188799 DOI: 10.1093/ajh/hpaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Correspondence: Eric Thorin ()
| |
Collapse
|