1
|
Parrilla GE, Vander Wall R, Chitranshi N, Basavarajappa D, Gupta V, Graham SL, You Y. RXR agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), reduces damage and protects from demyelination in transsynaptic degeneration model. Neuroscience 2024; 559:91-104. [PMID: 39173871 DOI: 10.1016/j.neuroscience.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative and demyelinating disease, such as multiple sclerosis (MS) are at the forefront of medical research and the discovery of new drugs and therapeutics. One phenomenon of degeneration seen in these diseases is transsynaptic degeneration (TSD), where damage from one axon spreads to the other axons that are connected to it synaptically. It has previously been found that demyelination occurs prior to neuronal loss in an experimental form of induced TSD. Retinoid-x receptor (RXR) agonists have been shown to promote remyelination. Therefore, this study aimed to reveal the effects of a novel endogenous RXR-γ agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), on preventing or restoring the effects of TSD. 9CDHRA was administered to mice following optic nerve crush (ONC) procedures, and electrophysiology (visual evoked potential, VEP) and histological (immunofluorescent) assessments were performed. It was found that 9CDHRA treatment effectively delayed glial activation and reduced the presence of apoptosis at the site of injury and further anterogradely in the visual system, including the lateral geniculate nucleus (LGN) and primary visual cortex (V1). Most notably, 9CDHRA was able to maintain myelin levels following ONC, and effectively protected from demyelination. This was corroborated by VEP recordings with improved P1 latency. The promising findings regarding the injury attenuating and myelin protecting properties of 9CDHRA necessitates further investigations into the potential therapeutic uses of this compound.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia.
| | - Roshana Vander Wall
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
2
|
Sezai T, Murphy MJ, Riddell N, Nguyen V, Crewther SG. Visual Processing During the Interictal Period Between Migraines: A Meta-Analysis. Neuropsychol Rev 2023; 33:765-782. [PMID: 36115887 PMCID: PMC10770263 DOI: 10.1007/s11065-022-09562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/20/2022] [Indexed: 10/14/2022]
Abstract
Migraine is a poorly understood neurological disorder and a leading cause of disability in young adults, particularly women. Migraines are characterized by recurring episodes of severe pulsating unilateral headache and usually visual symptoms. Currently there is some disagreement in the electrophysiological literature regarding the universality of all migraineurs exhibiting physiological visual impairments also during interictal periods (i.e., the symptom free period between migraines). Thus, this meta-analysis investigated the evidence for altered visual function as measured electrophysiologically via pattern-reversal visual evoked potential (VEP) amplitudes and habituation in adult migraineurs with or without visual aura and controls in the interictal period. Twenty-three studies were selected for random effects meta-analysis which demonstrated slightly diminished VEP amplitudes in the early fast conducting P100 component but not in N135, and substantially reduced habituation in the P100 and the N135 in migraineurs with and without visual aura symptoms compared to controls. No statistical differences were found between migraineurs with and without aura, possibly due to inadequate studies. Overall, insufficient published data and substantial heterogeneity between studies was observed for all latency components of pattern-reversal VEP, highlighting the need for further electrophysiological experimentation and more targeted temporal analysis of visual function, in episodic migraineurs.
Collapse
Affiliation(s)
- Timucin Sezai
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Melanie J Murphy
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Vinh Nguyen
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
3
|
Alhamdan AA, Murphy MJ, Crewther SG. Visual Motor Reaction Times Predict Receptive and Expressive Language Development in Early School-Age Children. Brain Sci 2023; 13:965. [PMID: 37371443 DOI: 10.3390/brainsci13060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Proficiency of multisensory processing and motor skill are often associated with early cognitive, social, and language development. However, little research exists regarding the relationship between multisensory motor reaction times (MRTs) to auditory, visual and audiovisual stimuli, and classical measures of receptive language and expressive vocabulary development in school-age children. Thus, this study aimed to examine the concurrent development of performance in classical tests of receptive (Peabody Picture Vocabulary Test; abbreviated as PPVT) and expressive vocabulary (Expressive Vocabulary Test; abbreviated as EVT), nonverbal intelligence (NVIQ) (determined with the aid of Raven's Colored Progressive Matrices; abbreviated as RCPM), speed of visual-verbal processing in the Rapid Automatic Naming (RAN) test, Eye-Hand Co-ordination (EHC) in the SLURP task, and multisensory MRTs, in children (n = 75), aged between 5 and 10 years. Bayesian statistical analysis showed evidence for age group differences in EVT performance, while PPVT was only different for the youngest group of children aged 5-6, supporting different developmental trajectories in vocabulary acquisition. Bayesian correlations revealed evidence for associations between age, NVIQ, and vocabulary measures, with decisive evidence and a higher correlation (r = 0.57 to 0.68) between EVT, MRT tasks, and EHC visuomotor processing. This was further supported by regression analyses indicating that EVT performance was the strongest unique predictor of multisensory MRTs, EHC, and RAN time. Additionally, visual MRTs were found to predict both receptive and expressive vocabulary. The findings of the study have important implications as accessible school-based assessments of the concurrent development of NVIQ, language, and multisensory processing; and hence as rapid and timely measures of developmental and neurodevelopmental status.
Collapse
Affiliation(s)
- Areej A Alhamdan
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Psychology, Imam Muhammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| | - Melanie J Murphy
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sheila G Crewther
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| |
Collapse
|
4
|
Tobener E, Searer A, Doettl S, Plyler P. Oculomotor Findings in Videonystagmography across the Lifespan. J Am Acad Audiol 2023; 34:11-18. [PMID: 39288905 DOI: 10.1055/s-0042-1760437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND When performing oculomotor testing during standard videonystagmography (VNG), the vestibular system is not actively stimulated. Therefore, responses are generated from the cerebellum, brainstem, and oculomotor tract. Many patients seen for vestibular testing fall outside of the standard age norms, making it difficult to determine whether an abnormal finding is due to age or oculomotor dysfunction. PURPOSE The purpose of this study was to further evaluate the effect of age on a standard clinical VNG oculomotor test battery consisting of saccades, smooth pursuit, and optokinetic (OPK) testing. RESEARCH DESIGN This is a cross-sectional, between-group prospective study comparing oculomotor tests between age groups. STUDY SAMPLE Twenty-one older adults between the ages of 60 and 90 years with no history of central or peripheral vestibular dysfunction were included in the study. Previously collected data from 29 children aged 4 to 6 years and 33 adults aged 20 to 60 years were also included. DATA COLLECTION AND ANALYSIS Participants completed oculomotor testing using infrared goggles consisting of saccades, smooth pursuit, and OPK. Statistical analyses were completed using multivariate analysis of variance and analysis of variance and follow-up analysis when indicated. RESULTS Significant group differences were noted for saccade latency and speed, smooth pursuit gain, and OPK gain and speed. Children and older adults demonstrated longer saccade latencies compared with the controls, and older adults exhibited slower saccade speed than the controls and children. These results also indicated that smooth pursuit gain was reduced for children and older adults compared with controls, and gain decreased across all groups as frequency increased. Analyses of OPK results indicated older adults had reduced gain and speed compared with the children and control group. CONCLUSIONS The findings of prolonged saccade latencies and reduced smooth pursuit gain in both children and older adults suggest possible cerebellar rather than attentional effects. However, other findings such as reduced saccade speed and reduced OPK gain were noted only in the older adults, which suggests oculomotor degeneration and/or insufficient coverage of the visual field during testing, respectively. These results also indicate the importance of age-specific normative data for use in clinical oculomotor testing.
Collapse
Affiliation(s)
- Elizabeth Tobener
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| | - Ashlee Searer
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| | - Steven Doettl
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| | - Patrick Plyler
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee
| |
Collapse
|
5
|
Rus-Oswald OG, Benner J, Reinhardt J, Bürki C, Christiner M, Hofmann E, Schneider P, Stippich C, Kressig RW, Blatow M. Musicianship-Related Structural and Functional Cortical Features Are Preserved in Elderly Musicians. Front Aging Neurosci 2022; 14:807971. [PMID: 35401149 PMCID: PMC8990841 DOI: 10.3389/fnagi.2022.807971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Professional musicians are a model population for exploring basic auditory function, sensorimotor and multisensory integration, and training-induced neuroplasticity. The brain of musicians exhibits distinct structural and functional cortical features; however, little is known about how these features evolve during aging. This multiparametric study aimed to examine the functional and structural neural correlates of lifelong musical practice in elderly professional musicians. Methods Sixteen young musicians, 16 elderly musicians (age >70), and 15 elderly non-musicians participated in the study. We assessed gray matter metrics at the whole-brain and region of interest (ROI) levels using high-resolution magnetic resonance imaging (MRI) with the Freesurfer automatic segmentation and reconstruction pipeline. We used BrainVoyager semiautomated segmentation to explore individual auditory cortex morphotypes. Furthermore, we evaluated functional blood oxygenation level-dependent (BOLD) activations in auditory and non-auditory regions by functional MRI (fMRI) with an attentive tone-listening task. Finally, we performed discriminant function analyses based on structural and functional ROIs. Results A general reduction of gray matter metrics distinguished the elderly from the young subjects at the whole-brain level, corresponding to widespread natural brain atrophy. Age- and musicianship-dependent structural correlations revealed group-specific differences in several clusters including superior, middle, and inferior frontal as well as perirolandic areas. In addition, the elderly musicians exhibited increased gyrification of auditory cortex like the young musicians. During fMRI, the elderly non-musicians activated predominantly auditory regions, whereas the elderly musicians co-activated a much broader network of auditory association areas, primary and secondary motor areas, and prefrontal and parietal regions like, albeit weaker, the young musicians. Also, group-specific age- and musicianship-dependent functional correlations were observed in the frontal and parietal regions. Moreover, discriminant function analysis could separate groups with high accuracy based on a set of specific structural and functional, mainly temporal and occipital, ROIs. Conclusion In conclusion, despite naturally occurring senescence, the elderly musicians maintained musicianship-specific structural and functional cortical features. The identified structural and functional brain regions, discriminating elderly musicians from non-musicians, might be of relevance for the aging musicians’ brain. To what extent lifelong musical activity may have a neuroprotective impact needs to be addressed further in larger longitudinal studies.
Collapse
Affiliation(s)
- Oana G. Rus-Oswald
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
- *Correspondence: Oana G. Rus-Oswald,
| | - Jan Benner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Jan Benner,
| | - Julia Reinhardt
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Orthopedic Surgery and Traumatology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Céline Bürki
- University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
| | - Markus Christiner
- Centre for Systematic Musicology, University of Graz, Graz, Austria
- Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Elke Hofmann
- Academy of Music, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Basel, Switzerland
| | - Peter Schneider
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Systematic Musicology, University of Graz, Graz, Austria
- Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Christoph Stippich
- Department of Neuroradiology and Radiology, Kliniken Schmieder, Allensbach, Germany
| | - Reto W. Kressig
- University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, Lucerne, Switzerland
| |
Collapse
|
6
|
Shen T, Sheriff S, You Y, Jiang J, Schulz A, Francis H, Mirzaei M, Saks D, Chitranshi N, Gupta V, Singh MF, Klistorner A, Wen W, Sachdev P, Gupta VK, Graham SL. Evaluating associations of RNFL thickness and multifocal VEP with cognitive assessment and brain MRI volumes in older adults: Optic nerve decline and cognitive change (ONDCC) initiative. AGING BRAIN 2022; 2:100049. [PMID: 36908892 PMCID: PMC9997126 DOI: 10.1016/j.nbas.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
To examine the relationships of retinal structural (optical coherence tomography) and visual functional (multifocal visual evoked potentials, mfVEP) indices with neuropsychological and brain structural measurements in healthy older subjects. 95 participants (mean (SD) age 68.1 (9.0)) years were recruited in the Optic Nerve Decline and Cognitive Change (ONDCC) study in this observational clinical investigation. OCT was conducted for retinal nerve fibre layer (RNFL) and mfVEP for amplitude and latency measurements. Participants undertook neuropsychological tests for cognitive performance and MRI for volumetric evaluation of various brain regions. Generalised estimating equation models were used for association analysis (p < 0.05). The brain volumetric measures including total grey matter (GM), cortex, thalamus, hippocampal and fourth ventricular volumes were significantly associated with global and sectoral RNFL. RNFL thickness correlated with delayed recalls of California verbal learning test (CVLT) and Rey complex figure test (RCFT). The mfVEP amplitudes associated with cerebral white matter (WM) and cingulate GM volumes in MRI and CVLT, RCFT and trail making test outcomes. A significant association of mfVEP latency with logical memory delayed recall and thalamus volume was also observed. Our results suggested significant association of specific RNFL and mfVEP measures with distinctive brain region volumes and cognitive tests reflecting performance in memory, visuospatial and executive functional domains. These findings indicate that the mfVEP and RNFL measurements may parallel brain structural and neuropsychological measures in the older population.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Corresponding authors at: Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's hospital), School of Medicine, Shanghai Jiao Tong University and Macquarie University.
| | - Samran Sheriff
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing and the Neuropsychiatric Institute, University of New South Wales, Sydney, NSW, Australia
| | - Angela Schulz
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Heather Francis
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Danit Saks
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- Faculty of Health, Deakin University, VIC, Australia
| | | | - Alexander Klistorner
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing and the Neuropsychiatric Institute, University of New South Wales, Sydney, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing and the Neuropsychiatric Institute, University of New South Wales, Sydney, NSW, Australia
| | - Vivek K. Gupta
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Corresponding authors at: Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's hospital), School of Medicine, Shanghai Jiao Tong University and Macquarie University.
| | - Stuart L. Graham
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Isbel B, Weber J, Lagopoulos J, Stefanidis K, Anderson H, Summers MJ. Neural changes in early visual processing after 6 months of mindfulness training in older adults. Sci Rep 2020; 10:21163. [PMID: 33273707 PMCID: PMC7713117 DOI: 10.1038/s41598-020-78343-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Mindfulness has been shown to improve attentional performance, which is known to decline in aging. Long-latency electroencephalographic (EEG) event-related potential (ERP) changes have been reported immediately after mindfulness training, however the enduring stability of these effects is unknown. Furthermore, the ability of mindfulness to impact earlier stages of information processing is unclear. We examined neural activation using high density EEG in older adults engaged in mindfulness training to examine the long-term stability of training effects. After 6 months of training, mindfulness practitioners displayed enhanced neural activation during sensory encoding and perceptual processing of a visual cue. Enhanced perceptual processing of a visual cue was associated with increased neural activation during post-perceptual processing of a subsequent target. Similar changes were not observed in a control group engaged in computer-based attention training over the same period. Neural changes following mindfulness training were accompanied by behavioural improvements in attentional performance. Our results are suggestive of increased efficiency of the neural pathways subserving bottom-up visual processing together with an enhanced ability to mobilise top-down attentional processes during perceptual and post-perceptual processing following mindfulness training. These results indicate that mindfulness may enhance neural processes known to deteriorate in normal aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ben Isbel
- Thompson Institute, University of the Sunshine Coast, Locked Bag 4 (ML59), Maroochydore DC, QLD, 4558, Australia.
| | - Jan Weber
- Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tuebingen, Österbergstrasse 3, 72074, Tuebingen, Germany
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Locked Bag 4 (ML59), Maroochydore DC, QLD, 4558, Australia
| | - Kayla Stefanidis
- Thompson Institute, University of the Sunshine Coast, Locked Bag 4 (ML59), Maroochydore DC, QLD, 4558, Australia
| | - Hannah Anderson
- Thompson Institute, University of the Sunshine Coast, Locked Bag 4 (ML59), Maroochydore DC, QLD, 4558, Australia
| | - Mathew J Summers
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Locked Bag 4 (ML59), Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
8
|
Ebaid D, Crewther SG. The Contribution of Oculomotor Functions to Rates of Visual Information Processing in Younger and Older Adults. Sci Rep 2020; 10:10129. [PMID: 32576849 PMCID: PMC7311387 DOI: 10.1038/s41598-020-66773-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
Oculomotor functions are established surrogate measures of visual attention shifting and rate of information processing, however, the temporal characteristics of saccades and fixations have seldom been compared in healthy educated samples of younger and older adults. Thus, the current study aimed to compare duration of eye movement components in younger (18-25 years) and older (50-81 years) adults during text reading and during object/alphanumeric Rapid Automatic Naming (RAN) tasks. The current study also aimed to examine the contribution of oculomotor functions to threshold time needed for accurate performance on visually-driven cognitive tasks (Inspection Time [IT] and Change Detection [CD]). Results showed that younger adults fixated on individual stimuli for significantly longer than the older participants, while older adults demonstrated significantly longer saccade durations than the younger group. Results also demonstrated that older adults required longer threshold durations (i.e., performed slower) on the visually-driven cognitive tasks, however, the age-group time difference on the CD task was eradicated when the effects of saccade duration were covaried. Thus, these results suggest that age-related cognitive decline is also related to increased duration of saccades and hence, highlights the need to dissociate the age-related motor constraints on the temporal aspects of oculomotor function from visuo-cognitive speed of processing.
Collapse
Affiliation(s)
- Deena Ebaid
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia.
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Kang S, Hayashi Y, Bruyns-Haylett M, Delivopoulos E, Zheng Y. Model-Predicted Balance Between Neural Excitation and Inhibition Was Maintained Despite of Age-Related Decline in Sensory Evoked Local Field Potential in Rat Barrel Cortex. Front Syst Neurosci 2020; 14:24. [PMID: 32528256 PMCID: PMC7247833 DOI: 10.3389/fnsys.2020.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022] Open
Abstract
The balance between neural excitation and inhibition has been shown to be crucial for normal brain function. However, it is unclear whether this balance is maintained through healthy aging. This study investigated the effect of aging on the temporal dynamics of the somatosensory evoked local field potential (LFP) in rats and tested the hypothesis that excitatory and inhibitory post-synaptic activities remain balanced during the aging process. The LFP signal was obtained from the barrel cortex of three different age groups of anesthetized rats (pre-adolescence: 4–6 weeks, young adult: 2–3 months, middle-aged adult: 10–20 months) under whisker pad stimulation. To confirm our previous finding that the initial segment of the evoked LFP was solely associated with excitatory post-synaptic activity, we micro-injected gabazine into the barrel cortex to block inhibition while LFP was collected continuously under the same stimulus condition. As expected, the initial slope of the evoked LFP in the granular layer was unaffected by gabazine injection. We subsequently estimated the excitatory and inhibitory post-synaptic activities through a balanced model of the LFP with delayed inhibition as an explicit constraint, and calculated the amplitude ratio of inhibition to excitation. We found an age-dependent slowing of the temporal dynamics in the somatosensory-evoked post-synaptic activity, as well as a significant age-related decrease in the amplitude of the excitatory component and a decreasing trend in the amplitude of the inhibitory component. Furthermore, the delay of inhibition with respect to excitation was significantly increased with age, but the amplitude ratio was maintained. Our findings suggest that aging reduces the amplitude of neural responses, but the balance between sensory evoked excitatory and inhibitory post-synaptic activities is maintained to support normal brain function during healthy aging. Further whole cell patch clamp experiments will be needed to confirm or refute these findings by measuring sensory evoked synaptic excitatory and inhibitory activities in vivo during the normal aging process.
Collapse
Affiliation(s)
- Sungmin Kang
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Yurie Hayashi
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College, South Kensington Campus, London, United Kingdom
| | - Evangelos Delivopoulos
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Ying Zheng
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| |
Collapse
|
10
|
Ebaid D, Crewther SG. Time for a Systems Biological Approach to Cognitive Aging?-A Critical Review. Front Aging Neurosci 2020; 12:114. [PMID: 32477097 PMCID: PMC7236912 DOI: 10.3389/fnagi.2020.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The underlying premise of current theories of cognitive decline with age tend to be primarily cognitive or biological explanations, with relatively few theories adequately integrating both aspects. Though literature has also emphasized the importance of several factors that contribute to cognitive aging including: (a) decline in sensory abilities; (b) the effect of motor speed on paper-pencil measures of cognitive speed; (c) the impact of level of education and physical activity; and (d) molecular biological changes that occur with age, these factors have seldom been implicated into any single theoretical model of cognitive aging. Indeed, such an integrated bio-cognitive model of aging has the potential to provide a more comprehensive understanding of attention, perception, learning, and memory across the lifespan. Thus, the aim of this review was to critically evaluate common theories of age-related cognitive decline and highlight the need for a more comprehensive systems neuroscience approach to cognitive aging.
Collapse
Affiliation(s)
- Deena Ebaid
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | | |
Collapse
|