1
|
Wang J, Zhang Q, Han Y, Zhang J, Zheng N. IL-11 promotes Ang II-induced autophagy inhibition and mitochondrial dysfunction in atrial fibroblasts. Open Life Sci 2025; 20:20251063. [PMID: 40092733 PMCID: PMC11909578 DOI: 10.1515/biol-2025-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/25/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to investigate potential targets for the pathogenesis of atrial fibrillation to facilitate the development of effective treatments. Atrial fibroblasts were isolated and stimulated with 1 μM angiotensin-II (Ang-II) for 24 h. To increase interleukin 11 (IL-11) expression, overexpression plasmids were transfected into atrial fibroblasts. The role and the underlying mechanism of IL-11 in atrial fibrillation were examined by immunofluorescence, measurements of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), and western blotting assays. Results demonstrated that IL-11 was upregulated in Ang-II-elicited atrial fibroblasts. Ang-II treatment increases alpha-smooth muscle actin (α-SMA), ROS and MMP levels, and p62 expression but decreases microtubule-associated protein light chain 3 II/I (LC3 II/I) and Beclin-1 expressions in atrial fibroblasts. These effects were further amplified by IL-11 overexpression. Mechanistically, the mammalian target of rapamycin (mTOR) pathway expression was enhanced in Ang-II-induced atrial fibroblasts, which was further elevated by IL-11 upregulation. IL-11 facilitates Ang II-induced differentiation of atrial fibroblasts into myofibroblasts by promoting oxidative stress, mitochondrial dysfunction, and autophagy inhibition through the mTOR pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Qianyu Zhang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Yunjie Han
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Jun Zhang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Nan Zheng
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| |
Collapse
|
2
|
Huang S, Xu M, Deng X, Da Q, Li M, Huang H, Zhao L, Jing L, Wang H. Anti irradiation nanoparticles shelter immune organ from radio-damage via preventing the IKK/IκB/NF-κB activation. Mol Cancer 2024; 23:234. [PMID: 39425231 PMCID: PMC11490033 DOI: 10.1186/s12943-024-02142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Normal tissue and immune organ protection are critical parts of the tumor radiation therapy process. Radiation-induced immune organ damage (RIOD) causes several side reactions by increasing oxidative stress and inflammatory responses, resulting in unsatisfactory curability in tumor radiation therapy. The aim of this study was to develop a novel and efficient anti irradiation nanoparticle and explore its mechanism of protecting splenic tissue from radiation in mice. METHODS Nanoparticles of triphenylphosphine cation NIT radicals (NPs-TPP-NIT) were prepared and used to protect the spleens of mice irradiated with X-rays. Splenic tissue histopathology and hematological parameters were investigated to evaluate the protective effect of NPs-TPP-NIT against X-ray radiation. Proteomics was used to identify differentially expressed proteins related to inflammatory factor regulation. In addition, in vitro and in vivo experiments were performed to assess the impact of NPs-TPP-NIT on radiation therapy. RESULTS NPs-TPP-NIT increased superoxide dismutase, catalase, and glutathione peroxidase activity and decreased malondialdehyde levels and reactive oxygen species generation in the spleens of mice after exposure to 6.0 Gy X-ray radiation. Moreover, NPs-TPP-NIT inhibited cell apoptosis, blocked the activation of cleaved cysteine aspartic acid-specific protease/proteinase, upregulated the expression of Bcl-2, and downregulated that of Bax. We confirmed that NPs-TPP-NIT prevented the IKK/IκB/NF-κB activation induced by ionizing radiation, thereby alleviating radiation-induced splenic inflammatory damage. In addition, when used during radiotherapy for tumors in mice, NPs-TPP-NIT exhibited no significant toxicity and conferred no significant tumor protective effects. CONCLUSIONS NPs-TPP-NIT prevented activation of IKK/IκB/NF-κB signaling, reduced secretion of pro-inflammatory factors, and promoted production of anti-inflammatory factors in the spleen, which exhibited radiation-induced damage repair capability without diminishing the therapeutic effect of radiation therapy. It suggests that NPs-TPP-NIT serve as a potential radioprotective drug to shelter immune organs from radiation-induced damage.
Collapse
Affiliation(s)
- Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Min Xu
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- The Third Stationed Outpatient Department, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Xiaojun Deng
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
| | - Qingyue Da
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miaomiao Li
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Hao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Linlin Jing
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Haibo Wang
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wu YL, Christodoulou AG, Beumer JH, Rigatti LH, Fisher R, Ross M, Watkins S, Cortes DRE, Ruck C, Manzoor S, Wyman SK, Stapleton MC, Goetzman E, Bharathi S, Wipf P, Wang H, Tan T, Christner SM, Guo J, Lo CWY, Epperly MW, Greenberger JS. Mitigation of Fetal Radiation Injury from Mid-Gestation Total-body Irradiation by Maternal Administration of Mitochondrial-Targeted GS-Nitroxide JP4-039. Radiat Res 2024; 202:565-579. [PMID: 39074819 PMCID: PMC11552446 DOI: 10.1667/rade-24-00095.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/31/2024]
Abstract
Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.
Collapse
Affiliation(s)
- Yijen L. Wu
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Anthony G. Christodoulou
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jan H. Beumer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Lora H. Rigatti
- Division of Laboratory Animal Resources (DLAR), University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Mark Ross
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Simon Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Devin R. E. Cortes
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
- Department of Biomedical Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Cody Ruck
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Shanim Manzoor
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Samuel K. Wyman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Margaret C. Stapleton
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Eric Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Sivakama Bharathi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Peter Wipf
- Department of Biomedical Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Chemistry, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Tuantuan Tan
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Susan M. Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Cecilia W. Y. Lo
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - Michael W. Epperly
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
4
|
Kumar VP, Jaiswal S, Wuddie K, Ward JM, Lawrence M, Ghosh SP. Development of a Radiation-induced Pulmonary Fibrosis Partial Body Irradiation Model in C57BL/6 Mice. Radiat Res 2024; 201:460-470. [PMID: 38376474 DOI: 10.1667/rade-23-00143.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.
Collapse
Affiliation(s)
- Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Shalini Jaiswal
- Biomedical Research Imaging Core (BRIC), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | | | - Mark Lawrence
- SCIREQ Scientific Respiratory Equipment Inc, Montreal, QC, Canada
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
5
|
Wu YL, Christodoulou AG, Beumer JH, Rigatti LH, Fisher R, Ross M, Watkins S, Cortes DRE, Ruck C, Manzoor S, Wyman SK, Stapleton MC, Goetzman E, Bharathi S, Wipf P, Tan T, Eiseman JL, Christner SM, Guo J, Lo CWY, Epperly MW, Greenberger JS. Mitigation of Fetal Irradiation Injury from Mid-Gestation Total Body Radiation with Mitochondrial-Targeted GS-Nitroxide JP4-039. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580105. [PMID: 38405696 PMCID: PMC10888932 DOI: 10.1101/2024.02.13.580105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal irradiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal irradiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)- nitroxide radiation mitigator, JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total body ionizing irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time- and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed significant reduction of mitochondrial function in the fetal brain after 3Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. Maternal administration JP4-039 one day after TBI (E14.5), which can pass through the placental barrier, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. This also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. As JP4-039 administration did not change litter sizes or fetus viability, together these findings indicate JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure. One Sentence Summary Mitochondrial-targeted gramicidin S (GS)-nitroxide JP4-039 is safe and effective radiation mitigator for mid-gestational fetal irradiation injury.
Collapse
|
6
|
Huang SH, Wu YW, Shueng PW, Wang SY, Tsai MC, Liu YH, Chuang WP, Lin HH, Tien HJ, Yeh HP, Hsieh CH. Case report: Stereotactic body radiation therapy with 12 Gy for silencing refractory ventricular tachycardia. Front Cardiovasc Med 2022; 9:973105. [PMID: 36407435 PMCID: PMC9669661 DOI: 10.3389/fcvm.2022.973105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Encouraging results have been reported for the treatment of ventricular tachycardia (VT) with stereotactic body radiation therapy (SBRT) with 25 Gy. SBRT with 12 Gy for refractory VT was designed to reduce long-term cardiac toxicity. METHODS Stereotactic body radiation therapy-VT simulation, planning, and treatment were performed using standard techniques. A patient was treated with a marginal dose of 12 Gy in a single fraction to the planning target volume (PTV). The goal was for at least ≥ 95% of the PTV to be covered by at least 95% of 12 Gy radiation. RESULTS From April 2021 through June 2022, a patient with refractory VT underwent treatment. The volume for PTV was 65.8 cm3. The mean radiation dose administered to the heart (the heart volume excluding the PTV) was 2.2 Gy. No acute or late toxicity was observed after SBRT. Six months after SBRT, the patient experienced new monomorphic right ventricular outflow tract (RVOT) VT. Interestingly, the substrate of the left ventricular basal to middle posteroseptal wall before SBRT was turned into scar zones with a local voltage < 0.5 mV. Catheter ablation to treat RVOT VT was performed, and the situation remains stable to date. CONCLUSION This study reports the first patient with refractory VT successfully treated with 12.0 Gy SBRT, suggesting that 12 Gy is a potential dose to treat refractory VT. Further investigations and enrollment of more patients are warranted to assess the long-term efficacy and side effects of this treatment.
Collapse
Affiliation(s)
- Shan-Hui Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Wei Shueng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Meng-Chieh Tsai
- Division of Radiology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuan-Hung Liu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electronic Engineering, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Wen-Po Chuang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Heng-Hsu Lin
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Ju Tien
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hsin-Pei Yeh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsi Hsieh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Head and Neck Cancer Surveillance and Research Group, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
7
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
8
|
Wang Y, Xu Y, Zhou K, Zhang S, Wang Y, Li T, Xie C, Zhang X, Song J, Wang X, Zhu C. Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Mol Neurobiol 2021; 59:1199-1213. [PMID: 34962635 PMCID: PMC8857090 DOI: 10.1007/s12035-021-02653-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the treatment of malignant brain tumors, but irradiation-induced late-onset toxicity remains a major problem. The purpose of this study was to investigate if genetic inhibition of autophagy has an impact on subcortical white matter development in the juvenile mouse brain after irradiation. Ten-day-old selective neural Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6-Gy dose of whole-brain irradiation and evaluated at 5 days after irradiation. Neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell loss in the subcortical white matter, and Atg7 deficiency partly prevented this. There was no significant change between the KO and WT mice in the number of microglia and astrocytes in the subcortical white matter after irradiation. Transcriptome analysis showed that the GO mitochondrial gene expression pathway was significantly enriched in the differentially expressed genes between the KO and WT group after irradiation. Compared with WT mice, expression of the mitochondrial fusion protein OPA1 and phosphorylation of the mitochondrial fission protein DRP1 (P-DRP1) were dramatically decreased in KO mice under physiological conditions. The protein levels of OPA1and P-DRP1 showed no differences in WT mice between the non-irradiated group and the irradiated group but had remarkably increased levels in the KO mice after irradiation. These results indicate that inhibition of autophagy reduces irradiation-induced subcortical white matter injury not by reducing inflammation, but by increasing mitochondrial fusion and inhibiting mitochondrial fission.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Kai Zhou
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, 17176, Stockholm, Sweden
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Tao Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, 17176, Stockholm, Sweden
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden. .,Department of Women's and Children's Health, Karolinska Institute, 17176, Stockholm, Sweden.
| |
Collapse
|
9
|
Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021; 22:8651. [PMID: 34445354 PMCID: PMC8395506 DOI: 10.3390/ijms22168651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE A major issue in radiotherapy is the relative resistance of hypoxic cells to radiation. Historic approaches to this problem include the use of oxygen mimetic compounds to sensitize tumour cells, which were unsuccessful. This review looks at modern approaches aimed at increasing the efficacy of targeting and radiosensitizing hypoxic tumour microenvironments relative to normal tissues and asks the question of whether non-targeted effects in radiobiology may provide a new "target". Novel techniques involve the integration of recent technological advancements such as nanotechnology, cell manipulation, and medical imaging. Particularly, the major areas of research discussed in this review include tumour hypoxia imaging through PET imaging to guide carbogen breathing, gold nanoparticles, macrophage-mediated drug delivery systems used for hypoxia-activate prodrugs, and autophagy inhibitors. Furthermore, this review outlines several features of these methods, including the mechanisms of action to induce radiosensitization, the increased accuracy in targeting hypoxic tumour microenvironments relative to normal tissue, preclinical/clinical trials, and future considerations. CONCLUSIONS This review suggests that the four novel tumour hypoxia therapeutics demonstrate compelling evidence that these techniques can serve as powerful tools to increase targeting efficacy and radiosensitizing hypoxic tumour microenvironments relative to normal tissue. Each technique uses a different way to manipulate the therapeutic ratio, which we have labelled "oxygenate, target, use, and digest". In addition, by focusing on emerging non-targeted and out-of-field effects, new umbrella targets are identified, which instead of sensitizing hypoxic cells, seek to reduce the radiosensitivity of normal tissues.
Collapse
|
10
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
11
|
Delayed effects of acute whole body lethal radiation exposure in mice pre-treated with BBT-059. Sci Rep 2020; 10:6825. [PMID: 32321983 PMCID: PMC7176697 DOI: 10.1038/s41598-020-63818-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
The threat of nuclear exposure is heightened and it is imperative to identify potential countermeasures for acute radiation syndrome. Currently no countermeasures have been approved for prophylactic administration. Effective countermeasures should function to increase survival in the short term as well as to increase the overall prognosis of an exposed individual long term. Here we describe the use of a promising radiation countermeasure, BBT-059, and the results of a long term mouse study (up to 12 months) in the male CD2F1 strain using 60Co gamma irradiation (~0.6 Gy/min, 7.5-12.5 Gy). We report the dose reduction factor of 1.28 for BBT-059 (0.3 mg/kg) compared to control administered 24 h prior to irradiation. In the long term study animals showed accelerated recovery in peripheral blood cell counts, bone marrow colony forming units, sternal cellularity and megakaryocyte numbers in drug treated mice compared to formulation buffer. In addition, increased senescence was observed in the kidneys of animals administered control or drug and exposed to the highest doses of radiation. Decreased levels of E-cadherin, LaminB1 and increased levels of Cyc-D and p21 in spleen lysates were observed in animals administered control. Taken together the results indicate a high level of protection following BBT-059 administration in mice exposed to lethal and supralethal doses of total body gamma-radiation.
Collapse
|