1
|
Matsuura H, Sakai K, Fujikawa K, Watanabe-Hosomi A, Mukai M, Ashida S, Fukunaga D, Koizumi T, Ohara T, Mizuta I, Teramukai S, Yamada K, Mizuno T. The Skewness of a Histogram of White Matter Hyperintensity is Associated with Symptomatic Stroke in Patients with CADASIL. Intern Med 2025:5270-25. [PMID: 40222943 DOI: 10.2169/internalmedicine.5270-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Objective White matter hyperintensity (WMH) is the most prominent magnetic resonance imaging (MRI) feature of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), clinically characterized by recurrent ischemic stroke. This study aimed to explore the association between WMH and symptomatic stroke in patients with CADASIL by quantifying the volume and features extracted from histogram-segmented WMH. Methods Twenty-eight patients with CADASIL were retrospectively recruited. WMH was extracted from fluid-attenuated inversion recovery (FLAIR) images. A histogram analysis of WMH was performed using radiomics extension on a 3D slicer. We compared the histogram parameters between patients with and without symptomatic stroke. Results Thirteen patients had no symptoms, while 15 had previous symptomatic stroke. Their characteristics were similar, except for a higher frequency of males among stroke patients (73.3 vs. 15.4%, respectively). Among the histogram features, the skewness of the FLAIR intensity histogram was significantly lower in patients with stroke than in those without stroke (-0.179 vs. 0.210, respectively, p=0.0287), but there was no significant difference regarding any other histogram features or the WMH volume. According to a multiple logistic regression analysis, sex and skewness remained significant (odds ratio: 40.870 and 0.0119, p=0.0136 and 0.0473, respectively). Conclusion The skewness of the FLAIR WMH intensity histogram was significantly correlated with stroke in patients with CADASIL.
Collapse
Affiliation(s)
- Hiraku Matsuura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Koji Sakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Kei Fujikawa
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Akiko Watanabe-Hosomi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Mao Mukai
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Shinji Ashida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Daiki Fukunaga
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Takashi Koizumi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Tomoyuki Ohara
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
2
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024; 66:223-235. [PMID: 38176524 PMCID: PMC11674792 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Mizuno T, Ohara T, Mizuta I, Naito A, Nakata M, Uno-Kadowaki A, Iwami Y, Watanabe-Hosomi A, Matsuura H, Fukunaga D, Ito-Ihara T, Teramukai S. Study protocol for LOMCAD Trial: Effect of lomerizine hydrochloride to prevent recurrence of cerebral ischemic events in CADASIL patients. J Stroke Cerebrovasc Dis 2024; 33:108042. [PMID: 39454930 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/28/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common monogenic cerebral small vessel diseases. Our previous observational study suggested that lomerizine hydrochloride, a calcium channel blocker approved in Japan in 1999 for the prevention of migraine headaches, is also effective for preventing recurrent ischemic stroke in CADASIL patients. The aim of this study (LOMCAD trial) is to verify the efficacy of lomerizine hydrochloride. MATERIALS AND METHODS This is a multicenter, prospective, single-arm trial, using a historical control for comparison. CADASIL patients with a history of two or more cerebral ischemic events within the last two years will be administered lomerizine hydrochloride (5-mg tablet twice daily) for 24 months. The primary endpoint is symptomatic cerebral ischemic events during the 24-month period. Using our historical data and Bayesian sample size calculation based on a prior predictive distribution, the planned sample size was determined as 20 subjects. CONCLUSION We have planned a clinical trial to verify the effectiveness of lomerizine hydrochloride as prophylaxis to prevent recurrent cerebral ischemic events in CADASIL patients. REGISTRATION The LOMCAD trial has been registered in the Japan Registry of Clinical Trials (jRCTs051220072, https://jrct.niph.go.jp/latest-detail/jRCTs051220072).
Collapse
Affiliation(s)
- Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomoyuki Ohara
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akari Naito
- Division of Data Science, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuko Nakata
- Division of Data Science, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aoi Uno-Kadowaki
- Division of Research Management, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Iwami
- Division of Research Management, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Watanabe-Hosomi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiraku Matsuura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Fukunaga
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiko Ito-Ihara
- Division of Research Management, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Teramukai
- Division of Data Science, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Tung H, Chou CC, Chen HM, Chen YM, Wu YY, Chai JW, Chen JP, Chen SC, Chen HC, Lee WJ. White Matter Hyperintensities and Cognitive Functions in People With the R544C Variant of the NOTCH3 Gene Without Stroke or Dementia. Neurology 2024; 103:e209941. [PMID: 39374470 DOI: 10.1212/wnl.0000000000209941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES NOTCH3 pathologic variants cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), which presents with stroke and dementia and is characterized by white matter hyperintensities (WMHs) on brain MRI. The R544C variant is a common pathologic variant in Taiwan, but not all carriers exhibit significant symptoms. We investigated whether WMHs occur before clinical symptoms in carriers with pathogenic variants, examined factors associated with WMHs, and explored their relationship with cognitive functions. METHODS We enrolled 63 R544C carriers without overt clinical disease (WOCD) and 37 age-matched and sex-matched noncarriers as controls from the Taiwan Precision Medicine Initiative data set. All participants underwent clinical interviews, comprehensive neuropsychological assessments, and brain MRI. We calculated total and regional WMH volumes, determined the age at which WMHs began increasing in carriers, and examined the relationship between WMHs and neuropsychological performance. Factors associated with WMH volumes were analyzed using multivariable linear regression models. RESULTS Compared with controls, R544C carriers WOCD had increased WMH volume, except in the occipital and midbrain areas, and showed a rapid increase in WMHs starting at age 48. They scored lower on the Mini-Mental State Examination (median = 28.4 vs 29.0, p = 0.048), Montreal Cognitive Assessment (MoCA) (median = 28.3 vs 29.0, p = 0.013), and memory and executive function tests than controls. After adjusting for age, sex, and education, MoCA scores were associated with whole-brain (r = -0.387, padj = 0.008) and regional WMHs (all padj < 0.05) except in the midbrain area. Age (β = 0.034, 95% CI 0.021-0.046, p < 0.001), hypercholesterolemia (β = 0.375, 95% CI 0.097-0.653, p = 0.009), and the vascular risk factor (VRF) index (β = 0.132, 95% CI 0.032-0.242, p = 0.019) were associated with the WMH severity in carriers. DISCUSSION Our study revealed that WMHs are extensively distributed in R544C carriers WOCD. They exhibited a rapid increase in WMHs beginning at age 48, approximately 7 years earlier than the reported age at symptomatic onset. Age was the strongest predictive factor of WMHs, and VRF, particularly hypercholesterolemia, might be modifying factors of WMHs.
Collapse
Affiliation(s)
- Hsin Tung
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chih Chou
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsian-Min Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ming Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ying Wu
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jyh-Wen Chai
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Peng Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Chun Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Chieh Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ju Lee
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
González-Mingot C, Gil-Sánchez A, Begué-Gómez R, López-Ortega R, Luis BR. Ischemic encephalopathic debut of CADASIL, a case report: It is better to be safe than sorry. Neurologia 2024; 39:712-715. [PMID: 39396268 DOI: 10.1016/j.nrleng.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 10/15/2024] Open
Affiliation(s)
- C González-Mingot
- Neurologist, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, Spain.
| | - A Gil-Sánchez
- Neuropsicologist, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, Spain
| | - R Begué-Gómez
- Radiologist, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, Spain
| | - R López-Ortega
- Geneticist, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, Spain
| | - B R Luis
- Neurologist, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, Spain
| |
Collapse
|
6
|
Bassi I, Grunspan M, Hen G, Ravichandran KA, Moshe N, Gutierrez-Miranda L, Safriel SR, Kostina D, Shen A, Ruiz de Almodovar C, Yaniv K. Endolysosomal dysfunction in radial glia progenitor cells leads to defective cerebral angiogenesis and compromised blood-brain barrier integrity. Nat Commun 2024; 15:8158. [PMID: 39289367 PMCID: PMC11408700 DOI: 10.1038/s41467-024-52365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide insights into NVU formation and function and offer avenues for investigating diseases involving white matter defects and vascular abnormalities.
Collapse
Affiliation(s)
- Ivan Bassi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Grunspan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Hen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kishore A Ravichandran
- Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Noga Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Gutierrez-Miranda
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav R Safriel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Kostina
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amitay Shen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Ruiz de Almodovar
- Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany
| | - Karina Yaniv
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Huang X, Qiu P, Ji H, Shi Y, Zhang L, Wang L, Mei L, Li P. Preimplantation Genetic Testing Inhibits the Transmission of Pathogenic Variants Associated With Cerebral White Matter Disease. Cureus 2024; 16:e65164. [PMID: 39176342 PMCID: PMC11339631 DOI: 10.7759/cureus.65164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Hereditary white matter disease is a series of progressive genetic diseases that mainly affect the white matter of the central nervous system. The development of molecular genetics enables the clinical diagnosis, carrier detection, and prenatal diagnosis of hereditary white matter disease. Here, we block the transmission of pathogenic variants in ABCD1 and NOTCH3 in a family with cerebral white matter disease via preimplantation genetic testing (PGT). Pathogenic genes were identified based on clinical manifestations, genetic background, and the results of targeted gene capture sequencing. A blastocyst biopsy was performed, and multiple annealing and looping-based amplification (MALBAC), next-generation sequencing (NGS), and single nucleotide polymorphism (SNP) arrays were used to analyze ploidy and the state of the gene mutations. The proband (III:1) had hemizygous mutations in ABCD1 (c.323C>A (p.Ser108 *) and c.775C>T (p.Arg259Trp)) and heterozygous mutations in NOTCH3 (c.1630C>T (p.Arg544Cys)), which were maternally inherited (II:2). After genetic analysis, a euploid blastocyst without ABCD1 and NOTCH3 variations was transferred. A healthy male baby was born at full term, and the results of prenatal diagnosis by amniocentesis in the second trimester verified the results of PGT. To our knowledge, this is the first report of simultaneously blocking the transmission of pathogenic variants in ABCD1 and NOTCH3 via PGT. This report highlights the feasibility and effectiveness of PGT in preventing cerebral adrenoleukodystrophy (cALD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and provides valuable insights for the diagnosis and treatment of similar cases.
Collapse
Affiliation(s)
- Xianjing Huang
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Pingping Qiu
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Hong Ji
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Yingying Shi
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Ling Zhang
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Longmei Wang
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Libin Mei
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| | - Ping Li
- Department of Reproductive Medicine, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
- Xiamen Key Laboratory of Reproduction and Genetics, The Affiliated Women and Children's Hospital of Xiamen University, Xiamen, CHN
| |
Collapse
|
8
|
Li W, Li H, Lu C, Zhao J, Xu H, Xu Z, Mitchell B, Jiang Y, Gu HQ, Xu Q, Wang A, Meng X, Lin J, Jing J, Li Z, Zhu W, Liang Z, Wang M, Wang Y. Neglected Mendelian causes of stroke in adult Chinese patients who had an ischaemic stroke or transient ischaemic attack. Stroke Vasc Neurol 2024; 9:194-201. [PMID: 37495379 PMCID: PMC11221298 DOI: 10.1136/svn-2022-002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Multiple factors play important roles in the occurrence and prognosis of stroke. However, the roles of monogenic variants in all-cause ischaemic stroke have not been systematically investigated. We aim to identify underdiagnosed monogenic stroke in an adult ischaemic stroke/transient ischaemic attack (TIA) cohort (the Third China National Stroke Registry, CNSR-III). METHODS Targeted next-generation sequencing for 181 genes associated with stroke was conducted on DNA samples from 10 428 patients recruited through CNSR-III. The genetic and clinical data from electronic health records (EHRs) were reviewed for completion of the diagnostic process. We assessed the percentages of individuals with pathogenic or likely pathogenic (P/LP) variants, and the diagnostic yield of pathogenic variants in known monogenic disease genes with associated phenotypes. RESULTS In total, 1953 individuals harboured at least one P/LP variant out of 10 428 patients. Then, 792 (7.6%) individuals (comprising 759 individuals harbouring one P/LP variant in one gene, 29 individuals harbouring two or more P/LP variants in different genes and 4 individuals with two P/LP variants in ABCC6) were predicted to be at risk for one or more monogenic diseases based on the inheritance pattern. Finally, 230 of 792 individuals manifested a clinical phenotype in the EHR data to support the diagnosis of stroke with a monogenic cause. The most diagnosed Mendelian cause of stroke in the cohort was cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. There were no relationships between age or family history and the incidence of first symptomatic monogenic stroke in patients. CONCLUSION The rate of monogenic cause of stroke was 2.2% after reviewing the clinical phenotype. Possible reasons that Mendelian causes of stroke may be missed in adult patients who had an ischaemic stroke/TIA include a late onset of stroke symptoms, combination with common vascular risks and the absence of a prominent family history.
Collapse
Affiliation(s)
- Wei Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chaoxia Lu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jialu Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Braxton Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Liang
- Department of Neurology, Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Mengxing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Xiao S, Ke M, Cai K, Xu A, Chen M. Treatment options for patients with CADASIL and large-scale cerebral infarction: mechanical thrombectomy and antiplatelet therapy-A case report. Front Neurol 2024; 15:1400537. [PMID: 38962485 PMCID: PMC11221192 DOI: 10.3389/fneur.2024.1400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant inherited arterial disease, with lacunar infarction resulting from intracranial small vessel lesions being the most prevalent clinical manifestation of CADASIL. However, large-scale cerebral infarction caused by intracranial non-small vessels occlusion is relatively uncommon, and reports of vascular intervention and long-term antiplatelet drug treatment for patients with CADASIL and large-scale cerebral infarction are rarer. Methods We reported a 52 year-old male who experienced a significant cerebral infarction due to an occlusion in the second segment of the left middle cerebral artery, 4 months subsequent to being diagnosed with CADASIL. Following the benefit and risk assessment, the patient underwent intracranial vascular thrombectomy and balloon dilation angioplasty. Subsequently, he was administered dual antiplatelet therapy for 3 months, followed by mono antiplatelet therapy. Results After undergoing intracranial vascular intervention and receiving antiplatelet therapy, significant improvement in the symptoms were observed. The National Institutes of Health Stroke Scale score decreased from 6 to 2 points, and no bleeding lesions were detected on the head computed tomography during regular follow-up visits after discharge. Conclusion Our case highlights the possibility that patients with CADASIL may also encounter extensive cerebral infarction resulting from stenosis or occlusion of intracranial non-small vessels. Considering the specific circumstances of the patient, intravascular intervention and antiplatelet therapy can be regarded as viable treatment options for individuals with CADASIL.
Collapse
Affiliation(s)
- Shuyue Xiao
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Man Ke
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kaiwei Cai
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Menglong Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Tasharrofi B, Najafi A, Pourbakhtyaran E, Amirsalari S, Khan GS, Ashrafi MR, Tavasoli AR, Keramatipour M, Heidari M. Distinct neurological phenotypes associated with biallelic loss of NOTCH3 function: evidence for recessive inheritance. Mol Biol Rep 2024; 51:714. [PMID: 38824264 DOI: 10.1007/s11033-024-09560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.
Collapse
Affiliation(s)
- Behnoosh Tasharrofi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan Amirsalari
- Pediatric Neurology Department, New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Golazin Shahbodagh Khan
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Verma R, Khetan A, Chakraborty R, Bal Kallupurakkal A. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy presenting as recurrent stroke and ataxia. BMJ Case Rep 2024; 17:e258990. [PMID: 38740447 DOI: 10.1136/bcr-2023-258990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Affiliation(s)
- Rajesh Verma
- Neurology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ankit Khetan
- Neurology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | | |
Collapse
|
12
|
Papageorgiou L, Papa L, Papakonstantinou E, Mataragka A, Dragoumani K, Chaniotis D, Beloukas A, Iliopoulos C, Bongcam-Rudloff E, Chrousos GP, Kossida S, Eliopoulos E, Vlachakis D. SNP and Structural Study of the Notch Superfamily Provides Insights and Novel Pharmacological Targets against the CADASIL Syndrome and Neurodegenerative Diseases. Genes (Basel) 2024; 15:529. [PMID: 38790158 PMCID: PMC11120892 DOI: 10.3390/genes15050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Lefteria Papa
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Antonia Mataragka
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Apostolos Beloukas
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Costas Iliopoulos
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK;
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Sofia Kossida
- IMGT, The International ImMunoGenetics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), 34000 Montpellier, France;
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK;
| |
Collapse
|
13
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
14
|
Liu W, Zhang J, Li J, Jia S, Wang Y, Geng J, Wang Y. First report of a p.Cys484Tyr Notch3 mutation in a CADASIL patient with acute bilateral multiple subcortical infarcts-case report and brief review. BMC Neurol 2024; 24:77. [PMID: 38408980 PMCID: PMC10895806 DOI: 10.1186/s12883-024-03573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND CADASIL(Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)is an inherited small vessel disease caused by mutations in NOTCH3 gene. Although NOTCH3 has numerous hotspots of gene mutations, mutations in exons 9 are rare. The p.C484T gene mutation type associated with it has not been reported in any relevant cases yet. Furthermore, CADASIL patients rarely present with acute bilateral multiple subcortical infarcts. CASE PRESENTATION We report the case of a Chinese female patient with CADASIL who experienced "an acute bilateral subcortical infarction" because of"hemodynamic changes and hypercoagulability". In genetic testing, we discovered a new Cys484Tyr mutation in exon 9, which has also been found in the patient's two daughters. CONCLUSIONS It is important to note that this discovery not only expands the mutation spectrum of Notch3 mutations in CADASIL patients, but also examines the mechanism behind acute bilateral subcortical infarction in CADASIL patients via case reviews and literature reviews, in order to provide some clinical recommendations for early intervention, diagnosis, and treatment in similar cases in the future.
Collapse
Affiliation(s)
- Weili Liu
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jian Li
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shuai Jia
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanqiang Wang
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jianhong Geng
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yaozhen Wang
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
15
|
Yamazaki R, Akamatsu Y, Yoshida J, Yamashita F, Sasaki M, Fujiwara S, Kobayashi M, Koji T, Ogasawara K. Association between preoperative white matter hyperintensities and postoperative new ischemic lesions on magnetic resonance imaging in patients with cognitive decline after carotid endarterectomy. Neurosurg Rev 2024; 47:91. [PMID: 38379090 DOI: 10.1007/s10143-024-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Although cognitive decline after carotid endarterectomy (CEA) is mainly related to postoperative cerebral hyperperfusion, approximately 30% of patients with cognitive decline do not have postoperative cerebral hyperperfusion. In patients with acute ischemic events, the development of cognitive decline after such events is associated with the presence of chronic cerebral white matter hyperintensities (WMHs). The present prospective observational study aimed to determine whether preoperative WMHs and postoperative new ischemic lesions (PNILs) are associated with cognitive decline after CEA in patients without cerebral hyperperfusion after CEA. Brain magnetic resonance imaging (MRI) was performed preoperatively, and WMHs were graded according to the Fazekas scale in patients undergoing CEA for severe stenosis of the ipsilateral internal carotid. Diffusion-weighted MRI was performed before and after CEA to determine the development of PNILs. Neuropsychological testing was performed preoperatively and at 2 months postoperatively to determine the development of postoperative cognitive decline (PCD). In 142 patients without postoperative cerebral hyperperfusion, logistic regression analysis revealed that preoperative Fazekas scale of periventricular WMHs (PVWMHs) (95% confidence interval [CI]: 1.78-28.10; P = 0.0055) and PNILs in the eloquent areas (95% CI: 7.42-571.89; P = 0.0002) were significantly associated with PCD. The specificity and positive-predictive value for the prediction of PCD were significantly greater for the combination of preoperative Fazekas scale 2 or 3 of PVWMHs and PNILs in the eloquent areas than for each individually. Preoperative PVWMHs, PNILs in the eloquent areas, and the combination of both were associated with PCD in patients without cerebral hyperperfusion after CEA.
Collapse
Affiliation(s)
- Ryouga Yamazaki
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan
| | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan
| | - Jun Yoshida
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan
| | - Takahiro Koji
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan.
| |
Collapse
|
16
|
Gutierrez Gomez C, Lopez Gonzalez MDA, Vazquez Tobias AN, Rivera Chávez JG. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL) Syndrome: A Case Report and Review of Literature. Cureus 2024; 16:e53469. [PMID: 38435179 PMCID: PMC10909453 DOI: 10.7759/cureus.53469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant genetic disorder of the small arteries that causes ischemic vascular events, subcortical dementia, behavioral changes, and migraine-like headaches. It is caused by a mutation in the NOTCH3 gene; this disease was first described in 1955 by van Bogaert. We present a 29-year-old woman who presented to the neurology department. She has no history of chronic degenerative diseases. She has been complaining of migraine-like headaches for the past six months. She has cognitive impairment with arithmetic and executive function deficits on neurological examination. Blood biometry and blood chemistry are within normal parameters in her laboratory studies. A viral panel and immunological profile were also performed and were not reactive. A lumbar puncture was performed, and the composition of the cerebrospinal fluid was within normal limits. An MRI was performed, which showed bilateral and symmetric white matter hyperintensities consistent with CADASIL syndrome. There is no specific treatment. Management of these patients is based on symptom control. Neurological sequelae have an important impact on the quality of life and mortality of these patients. For this reason, pharmacological preventive therapies have been sought with controversial evidence.
Collapse
|
17
|
Mizuta I, Nakao-Azuma Y, Yoshida H, Yamaguchi M, Mizuno T. Progress to Clarify How NOTCH3 Mutations Lead to CADASIL, a Hereditary Cerebral Small Vessel Disease. Biomolecules 2024; 14:127. [PMID: 38254727 PMCID: PMC10813265 DOI: 10.3390/biom14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.
Collapse
Affiliation(s)
- Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| | - Yumiko Nakao-Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| |
Collapse
|
18
|
Canalis E, Mocarska M, Schilling L, Jafar-Nejad P, Carrer M. Antisense oligonucleotides targeting a NOTCH3 mutation in male mice ameliorate the cortical osteopenia of lateral meningocele syndrome. Bone 2023; 177:116898. [PMID: 37704069 PMCID: PMC10591917 DOI: 10.1016/j.bone.2023.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Lateral Meningocele Syndrome (LMS) is a monogenic disorder associated with NOTCH3 pathogenic variants that result in the stabilization of NOTCH3 and a gain-of-function. A mouse model (Notch3em1Ecan) harboring a 6691-TAATGA mutation in the Notch3 locus that results in a functional outcome analogous to LMS exhibits cancellous and cortical bone osteopenia. We tested Notch3 antisense oligonucleotides (ASOs) specific to the Notch36691-TAATGA mutation for their effects on Notch3 downregulation and on the osteopenia of Notch3em1Ecan mice. Twenty-four mouse Notch3 mutant ASOs were designed and tested for toxic effects in vivo, and 12 safe ASOs were tested for their impact on the downregulation of Notch36691-TAATGA and Notch3 mRNA in osteoblast cultures from Notch3em1Ecan mice. Three ASOs downregulated Notch3 mutant transcripts specifically and were tested in vivo for their effects on the bone microarchitecture of Notch3em1Ecan mice. All three ASOs were well tolerated. One of these ASOs had more consistent effects in vivo and was studied in detail. The Notch3 mutant ASO downregulated Notch3 mutant transcripts in osteoblasts and bone marrow stromal cells and had no effect on other Notch receptors. The subcutaneous administration of Notch3 mutant ASO at 50 mg/Kg decreased Notch36691-TAATGA mRNA in bone without apparent toxicity; microcomputed tomography demonstrated that the ASO ameliorated the cortical osteopenia of Notch3em1Ecan mice but not the cancellous bone osteopenia. In conclusion, a Notch3 ASO that downregulates Notch3 mutant expression specifically ameliorates the cortical osteopenia in Notch3em1Ecan mice. ASOs may become useful strategies in the management of monogenic disorders affecting the skeleton.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA; Department of Medicine, UConn Health, Farmington, CT, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| | - Magda Mocarska
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | | | | |
Collapse
|
19
|
Tricarico PM, Crovella S. Notch Signaling in Health and Disease. Int J Mol Sci 2023; 24:16113. [PMID: 38003301 PMCID: PMC10670977 DOI: 10.3390/ijms242216113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The Notch signaling pathway, a vital and evolutionarily conserved regulator of cellular processes, intricately shapes both health and disease [...].
Collapse
Affiliation(s)
- Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Department of Advanced Diagnostics, 34137 Trieste, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
20
|
Aguilar-Fuentes V, Justo-Hernández D, Arredondo-Dubois JM, Ruiz-Sandoval JL, Jiménez-Ruiz A. Palliative care in CADASIL: diagnosis is only the first step. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1022-1024. [PMID: 38035586 PMCID: PMC10689096 DOI: 10.1055/s-0043-1777009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Victor Aguilar-Fuentes
- Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla de Zaragoza, Puebla, México.
| | | | | | - José Luis Ruiz-Sandoval
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Departamento de Neurología, Clínica de Enfermedad Vascular Cerebral, Guadalajara, Jalisco, México.
| | - Amado Jiménez-Ruiz
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Departamento de Neurología, Clínica de Enfermedad Vascular Cerebral, Guadalajara, Jalisco, México.
| |
Collapse
|
21
|
Szymanowicz O, Korczowska-Łącka I, Słowikowski B, Wiszniewska M, Piotrowska A, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Headache and NOTCH3 Gene Variants in Patients with CADASIL. Neurol Int 2023; 15:1238-1252. [PMID: 37873835 PMCID: PMC10594416 DOI: 10.3390/neurolint15040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Autosomal dominant cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular disease characterized by recurrent strokes, cognitive impairment, psychiatric symptoms, apathy, and migraine. Approximately 40% of patients with CADASIL experience migraine with aura (MA). In addition to MA, CADASIL patients are described in the literature as having migraine without aura (MO) and other types of headaches. Mutations in the NOTCH3 gene cause CADASIL. This study investigated NOTCH3 genetic variants in CADASIL patients and their potential association with headache types. Genetic tests were performed on 30 patients with CADASIL (20 women aged 43.6 ± 11.5 and 10 men aged 39.6 ± 15.8). PCR-HRM and sequencing methods were used in the genetic study. We described three variants as pathogenic/likely pathogenic (p.Tyr189Cys, p.Arg153Cys, p.Cys144Arg) and two benign variants (p.Ala202=, p.Thr101=) in the NOTCH3 gene and also presented the NOTCH3 gene variant (chr19:15192258 G>T), which has not been previously described in the literature. Patients with pathogenic/likely pathogenic variants had similar headache courses. People with benign variants showed a more diverse clinical picture. It seems that different NOTCH3 variants may contribute to the differential presentation of a CADASIL headache, highlighting the diagnostic and prognostic value of headache characteristics in this disease.
Collapse
Affiliation(s)
- Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Małgorzata Wiszniewska
- Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, 64-920 Pila, Poland;
- Department of Neurology, Specialistic Hospital in Pila, 64-920 Pila, Poland
| | - Ada Piotrowska
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.P.); (W.K.)
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.P.); (W.K.)
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| |
Collapse
|
22
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Liu S, Men X, Guo Y, Cai W, Wu R, Gao R, Zhong W, Guo H, Ruan H, Chou S, Mai J, Ping S, Jiang C, Zhou H, Mou X, Zhao W, Lu Z. Gut microbes exacerbate systemic inflammation and behavior disorders in neurologic disease CADASIL. MICROBIOME 2023; 11:202. [PMID: 37684694 PMCID: PMC10486110 DOI: 10.1186/s40168-023-01638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1β and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuejiao Men
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yang Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Cai
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ruizhen Wu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Rongsui Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Huating Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Shuli Chou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junrui Mai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Suning Ping
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310012, Zhejiang, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhengqi Lu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
24
|
Abstract
The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.
Collapse
Affiliation(s)
- Arndt F. Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Hu J, Qian J, Che Z, Tang B, Li Y, Gong Q, Lu X. A novel report of Cys1298Gly mutation in exon 24 of NOTCH3 gene in a Chinese family with CADASIL. J Stroke Cerebrovasc Dis 2023; 32:107208. [PMID: 37295172 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common monogenic hereditary small cerebral vessel disease, which is caused by mutation of the neurogenic locus notch homolog protein 3 gene (NOTCH3). The exon 24 encodes EGF-like repeats, variants on this exon are rare. Here, we report a novel heterozygous variant c.3892 T >G (p. Cys1298Gly) on exon 24 of NOTCH3 gene in a 57-year-old Chinese woman. MATERIALS AND METHODS We present a patient with clinical manifestations, laboratory examination and imaging reveal suspicion of CADASIL. The family and genetic test and pathological examination were performed. RESULTS Magnetic resonance imaging revealed diffuse leukoencephalopathy with hyperintense signals in the bilateral temporal poles, periventricular white matter, centrum semiovale, basal ganglia, frontal and parietal cortex and subcortical areas bilaterally. Molecular Genetic testing identified a heterozygous variant c.3892 T >G (p. Cys1298Gly) on exon 24 of NOTCH3 gene. Her brother and his son were confirmed as subclinical carriers of the variant. The skin biopsy was negative, but the pathologic role of this mutation is predicted by using the DynaMut database and results showed the stability of the NOTCH gene is decreased. CONCLUSIONS To the best of our knowledge, this is the second case of exon 24 mutations reported from China and the variant of c.3892 T >G (p. Cys1298Gly) on exon 24 of NOTCH3 has not been reported so far. Our report broadens the mutation spectrum of the NOTCH3 gene in CADASIL.
Collapse
Affiliation(s)
- Jinghan Hu
- Department of Neurology, the People's Hospital of Wenshan Prefecture, the Affiliated Hospital of Kunming University of Science and Technology, Wenshan, China
| | - Jing Qian
- Medical school, Kunming University of Science and Technology, Kunming, China
| | - Zhihui Che
- Kunming KingMed Center for Clinical Laboratory, Kunming, China
| | - Bin Tang
- Department of Neurology, the People's Hospital of Wenshan Prefecture, the Affiliated Hospital of Kunming University of Science and Technology, Wenshan, China
| | - Yan Li
- Outpatient Department, the People's Hospital of Wenshan Prefecture, the Affiliated Hospital of Kunming University of Science and Technology, Wenshan, China
| | - Qiang Gong
- Changsha KingMed Center for Clinical Laboratory, Changsha, China.
| | - Xianzhen Lu
- Department of Neurosurgery, the People's Hospital of Wenshan Prefecture, the Affiliated Hospital of Kunming University of Science and Technology, Wenshan, China.
| |
Collapse
|
26
|
Pan AP, Potter T, Bako A, Tannous J, Seshadri S, McCullough LD, Vahidy FS. Lifelong cerebrovascular disease burden among CADASIL patients: analysis from a global health research network. Front Neurol 2023; 14:1203985. [PMID: 37521283 PMCID: PMC10375407 DOI: 10.3389/fneur.2023.1203985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Data reporting on patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) within the United States population is limited. We sought to evaluate the overt cerebrovascular disease burden among patients with CADASIL. Methods Harmonized electronic medical records were extracted from the TriNetX global health research network. CADASIL patients were identified using diagnostic codes and those with/without history of documented stroke sub-types (ischemic stroke [IS], intracerebral hemorrhage [ICH], subarachnoid hemorrhage [SAH] and transient ischemic attack [TIA]) were compared. Adjusted odds ratios (OR) and 95% confidence intervals (CI) of stroke incidence and mortality associated with sex were computed. Results Between September 2018 and April 2020, 914 CADASIL patients were identified (median [IQR] age: 60 [50-69], 61.3% females); of whom 596 (65.2%) had documented cerebrovascular events (i.e., CADASIL-Stroke patients). Among CADASIL-Stroke patients, 89.4% experienced an IS, co-existing with TIAs in 27.7% and hemorrhagic strokes in 6.2%; initial stroke events occurred ≤65 years of age in 71% of patients. CADASIL-Stroke patients (vs. CADASIL-non-Stroke) had higher cardiovascular and neurological (migraines, cognitive impairment, epilepsy/seizures, mood disorders) burden. In age- and comorbidity-adjusted models, males had higher associated risk of stroke onset (OR: 1.37, CI: 1.01-1.86). Mortality risk was higher for males (OR: 2.72, CI: 1.53-4.84). Discussion Early screening and targeted treatment strategies are warranted to help CADASIL patients with symptom management and risk mitigation.
Collapse
Affiliation(s)
- Alan P. Pan
- Center for Health Data Science and Analytics, Houston Methodist, Houston, TX, United States
| | - Thomas Potter
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Abdulaziz Bako
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Jonika Tannous
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Farhaan S. Vahidy
- Center for Health Data Science and Analytics, Houston Methodist, Houston, TX, United States
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
27
|
Mishra B, Vibha D, Tripathi M. Broadening the Genetic Horizons of CADASIL: New Variants of the NOTCH3 Gene Revealed and their Association with CADASIL. Ann Indian Acad Neurol 2023; 26:356-358. [PMID: 37970253 PMCID: PMC10645246 DOI: 10.4103/aian.aian_301_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Biswamohan Mishra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Vibha
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Osteraas ND, Dafer RM. Advances in Management of the Stroke Etiology One-Percenters. Curr Neurol Neurosci Rep 2023; 23:301-325. [PMID: 37247169 PMCID: PMC10225785 DOI: 10.1007/s11910-023-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE OF REVIEW Uncommon causes of stroke merit specific attention; when clinicians have less common etiologies of stoke in mind, the diagnosis may come more easily. This is key, as optimal management will in many cases differs significantly from "standard" care. RECENT FINDINGS Randomized controlled trials (RCT) on the best medical therapy in the treatment of cervical artery dissection (CeAD) have demonstrated low rates of ischemia with both antiplatelet and vitamin K antagonism. RCT evidence supports the use of anticoagulation with vitamin K antagonism in "high-risk" patients with antiphospholipid antibody syndrome (APLAS), and there is new evidence supporting the utilization of direct oral anticoagulation in malignancy-associated thrombosis. Migraine with aura has been more conclusively linked not only with increased risk of ischemic and hemorrhagic stroke, but also with cardiovascular mortality. Recent literature has surprisingly not provided support the utilization of L-arginine in the treatment of patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS); however, there is evidence at this time that support use of enzyme replacement in patients with Fabry disease. Additional triggers for reversible cerebral vasoconstriction syndrome (RCVS) have been identified, such as capsaicin. Imaging of cerebral blood vessel walls utilizing contrast-enhanced MRA is an emerging modality that may ultimately prove to be very useful in the evaluation of patients with uncommon causes of stroke. A plethora of associations between cerebrovascular disease and COVID-19 have been described. Where pertinent, authors provide additional tips and guidance. Less commonly encountered conditions with updates in diagnosis, and management along with clinical tips are reviewed.
Collapse
Affiliation(s)
| | - Rima M Dafer
- Rush University Medical Center, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison St., Suite 1118, Chicago, IL, 60612, USA.
| |
Collapse
|
29
|
Ding X, Chen Y, Guo C, Fu Y, Qin C, Zhu Q, Wang J, Zhang R, Tian H, Feng R, Liu H, Liang D, Wang G, Teng J, Li J, Tang B, Wang X. Mutations in ARHGEF15 cause autosomal dominant hereditary cerebral small vessel disease and osteoporotic fracture. Acta Neuropathol 2023; 145:681-705. [PMID: 36929019 DOI: 10.1007/s00401-023-02560-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Cerebral small vessel disease (CSVD) is a prominent cause of ischemic and hemorrhagic stroke and a leading cause of vascular dementia, affecting small penetrating vessels of the brain. Despite current advances in genetic susceptibility studies, challenges remain in defining the causative genes and the underlying pathophysiological mechanisms. Here, we reported that the ARHGEF15 gene was a causal gene linked to autosomal dominant inherited CSVD. We identified one heterozygous nonsynonymous mutation of the ARHGEF15 gene that cosegregated completely in two families with CSVD, and a heterozygous nonsynonymous mutation and a stop-gain mutation in two individuals with sporadic CSVD, respectively. Intriguingly, clinical imaging and pathological findings displayed severe osteoporosis and even osteoporotic fractures in all the ARHGEF15 mutation carriers. In vitro experiments indicated that ARHGEF15 mutations resulted in RhoA/ROCK2 inactivation-induced F-actin cytoskeleton disorganization in vascular smooth muscle cells and endothelial cells and osteoblast dysfunction by inhibiting the Wnt/β-catenin signaling pathway in osteoblast cells. Furthermore, Arhgef15-e(V368M)1 transgenic mice developed CSVD-like pathological and behavioral phenotypes, accompanied by severe osteoporosis. Taken together, our findings provide strong evidence that loss-of-function mutations of the ARHGEF15 gene cause CSVD accompanied by osteoporotic fracture.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Cancan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jiuqi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Renyi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases &, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
30
|
Sharrief A. Diagnosis and Management of Cerebral Small Vessel Disease. Continuum (Minneap Minn) 2023; 29:501-518. [PMID: 37039407 DOI: 10.1212/con.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Cerebral small vessel disease (CSVD) is a common neurologic condition that contributes to considerable mortality and disability because of its impact on ischemic and hemorrhagic stroke risk and dementia. While attributes of the disease have been recognized for over two centuries, gaps in knowledge remain related to its prevention and management. The purpose of this review is to provide an overview of the current state of knowledge for CSVD. LATEST DEVELOPMENTS CSVD can be recognized by well-defined radiographic criteria, but the pathogenic mechanism behind the disease is unclear. Hypertension control remains the best-known strategy for stroke prevention in patients with CSVD, and recent guidelines provide a long-term blood pressure target of less than 130/80 mm Hg for patients with ischemic and hemorrhagic stroke, including those with stroke related to CSVD. Cerebral amyloid angiopathy is the second leading cause of intracerebral hemorrhage and may be increasingly recognized because of newer, more sensitive imaging modalities. Transient focal neurologic episodes is a relatively new term used to describe "amyloid spells." Guidance on distinguishing these events from seizures and transient ischemic attacks has been published. ESSENTIAL POINTS CSVD is prevalent and will likely be encountered by all neurologists in clinical practice. It is important for neurologists to be able to recognize CSVD, both radiographically and clinically, and to counsel patients on the prevention of disease progression. Blood pressure control is especially relevant, and strategies are needed to improve blood pressure control for primary and secondary stroke prevention in patients with CSVD.
Collapse
Affiliation(s)
- Anjail Sharrief
- Associate Professor of Neurology, Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas
| |
Collapse
|
31
|
Xu SY, Li HJ, Li S, Ren QQ, Liang JL, Li CX. Heterozygous Pathogenic and Likely Pathogenic Symptomatic HTRA1 Variant Carriers in Cerebral Small Vessel Disease. Int J Gen Med 2023; 16:1149-1162. [PMID: 37016629 PMCID: PMC10066890 DOI: 10.2147/ijgm.s404813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
High temperature requirement serine peptidase A1 (HTRA1) related cerebral small vessel disease (CSVD) includes both symptomatic heterozygous HTRA1 variant carrier and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) patients. Presently, most reported symptomatic heterozygous HTRA1 variant carrier cases are sporadic family reports with a lack of specific characteristics. Additionally, the molecular mechanism of heterozygous HTRA1 gene variants is unclear. We conducted this review to collect symptomatic carriers of heterozygous HTRA1 gene variants reported as of 2022, analyzed all pathogenicity according to American College of Medical Genetics and Genomics (ACMG) variant classification, and summarized the cases with pathogenic and likely pathogenic HTRA1 variants gender characteristics, age of onset, geographical distribution, initial symptoms, clinical manifestations, imaging signs, HTRA1 gene variant information and to speculate its underlying pathogenic mechanisms. In this review, we summarized the following characteristics of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers: to date, the majority of reported symptomatic HTRA1 carriers are in European and Asian countries, particularly in China which was found to have the highest number of reported cases. The age of first onset is mostly concentrated in the fourth and fifth decades. The heterozygous HTRA1 gene variants were mostly missense variants. The two variant sites, 166-182 aa and 274-302 aa, were the most concentrated. Clinicians need to pay attention to de novo data and functional data, which may affect the pathogenicity analysis. The decrease in HtrA1 protease activity is currently the most important explanation for the genetic pathogenesis.
Collapse
Affiliation(s)
- Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui-Juan Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, People’s Republic of China
| | - Shun Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, People’s Republic of China
| | - Qian-Qian Ren
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jian-Lin Liang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chang-Xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Chang-Xin Li, Department of Neurology, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan, Shanxi Province, 030001, People’s Republic of China, Tel +86 15103513579, Email
| |
Collapse
|
32
|
Kara B, Gordon MN, Gifani M, Dorrance AM, Counts SE. Vascular and Nonvascular Mechanisms of Cognitive Impairment and Dementia. Clin Geriatr Med 2023; 39:109-122. [PMID: 36404024 PMCID: PMC10062062 DOI: 10.1016/j.cger.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aging, familial gene mutations, and genetic, environmental, and modifiable lifestyle risk factors predispose individuals to cognitive impairment or dementia by influencing the efficacy of multiple, often interdependent cellular and molecular homeostatic pathways mediating neuronal, glial, and vascular integrity and, ultimately, cognitive status. This review summarizes data from foundational and recent breakthrough studies to highlight common and differential vascular and nonvascular pathogenic mechanisms underlying the progression of Alzheimer disease, vascular dementia, frontotemporal dementia, and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Betul Kara
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Marcia N Gordon
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA; Department of Family Medicine, Michigan State University, 15 Michigan Street Northeast, Grand Rapids, MI 49503, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Medical Center, 20 Jefferson Avenue Southeast, Grand Rapids, MI 49503, USA.
| |
Collapse
|
33
|
Yamamoto Y, Liao YC, Lee YC, Ihara M, Choi JC. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol 2023; 19:12-27. [PMID: 36606642 PMCID: PMC9833879 DOI: 10.3988/jcn.2023.19.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disorder of the cerebral small blood vessels. It is caused by mutations in the NOTCH3 gene on chromosome 19, and more than 280 distinct pathogenic mutations have been reported to date. CADASIL was once considered a very rare disease with an estimated prevalence of 1.3-4.1 per 100,000 adults. However, recent large-scale genomic studies have revealed a high prevalence of pathogenic NOTCH3 variants among the general population, with the highest risk being among Asians. The disease severity and age at onset vary significantly even among individuals who carry the same NOTCH3 mutations. It is still unclear whether a significant genotype-phenotype correlation is present in CADASIL. The accumulation of granular osmiophilic material in the vasculature is a characteristic feature of CADASIL. However, the exact pathogenesis of CADASIL remains largely unclear despite various laboratory and clinical observations being made. Major hypotheses proposed so far have included aberrant NOTCH3 signaling, toxic aggregation, and abnormal matrisomes. Several characteristic features have been observed in the brain magnetic resonance images of patients with CADASIL, including subcortical lacunar lesions and white matter hyperintensities in the anterior temporal lobe or external capsule, which were useful in differentiating CADASIL from sporadic stroke in patients. The number of lacunes and the degree of brain atrophy were useful in predicting the clinical outcomes of patients with CADASIL. Several promising blood biomarkers have also recently been discovered for CADASIL, which require further research for validation.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, Korea.,Institute for Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|
34
|
Yoon JY, Klein JP. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts And Leukoencephalopathy Hidden by Another Stroke. Stroke 2022; 53:e422-e423. [DOI: 10.1161/strokeaha.122.039829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph Y. Yoon
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY (J.Y.Y.)
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA (J.Y.Y., J.P.K)
| | - Joshua P. Klein
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA (J.Y.Y., J.P.K)
| |
Collapse
|
35
|
Canalis E, Carrer M, Eller T, Schilling L, Yu J. Use of antisense oligonucleotides to target Notch3 in skeletal cells. PLoS One 2022; 17:e0268225. [PMID: 35536858 PMCID: PMC9089911 DOI: 10.1371/journal.pone.0268225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Notch receptors are determinants of cell fate and function, and play an important role in the regulation of bone development and skeletal remodeling. Lateral Meningocele Syndrome (LMS) is a monogenic disorder associated with NOTCH3 pathogenic variants that result in the stabilization of NOTCH3 and a gain-of-function. LMS presents with neurological developmental abnormalities and bone loss. We created a mouse model (Notch3em1Ecan) harboring a 6691TAATGA mutation in the Notch3 locus, and heterozygous Notch3em1Ecan mice exhibit cancellous and cortical bone osteopenia. In the present work, we explored whether Notch3 antisense oligonucleotides (ASO) downregulate Notch3 and have the potential to ameliorate the osteopenia of Notch3em1Ecan mice. Notch3 ASOs decreased the expression of Notch3 wild type and Notch36691-TAATGA mutant mRNA expressed by Notch3em1Ecan mice in osteoblast cultures without evidence of cellular toxicity. The effect was specific since ASOs did not downregulate Notch1, Notch2 or Notch4. The expression of Notch3 wild type and Notch36691-TAATGA mutant transcripts also was decreased in bone marrow stromal cells and osteocytes following exposure to Notch3 ASOs. In vivo, the subcutaneous administration of Notch3 ASOs at 25 to 50 mg/Kg decreased Notch3 mRNA in the liver, heart and bone. Microcomputed tomography demonstrated that the administration of Notch3 ASOs ameliorates the cortical osteopenia of Notch3em1Ecan mice, and ASOs decreased femoral cortical porosity and increased cortical thickness and bone volume. However, the administration of Notch3 ASOs did not ameliorate the cancellous bone osteopenia of Notchem1Ecan mice. In conclusion, Notch3 ASOs downregulate Notch3 expression in skeletal cells and their systemic administration ameliorates cortical osteopenia in Notch3em1Ecan mice; as such ASOs may become useful strategies in the management of skeletal diseases affected by Notch gain-of-function.
Collapse
MESH Headings
- Abnormalities, Multiple
- Animals
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/metabolism
- Bone and Bones/diagnostic imaging
- Bone and Bones/metabolism
- Meningocele
- Mice
- Oligonucleotides, Antisense
- RNA, Messenger
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Receptors, Notch/genetics
- X-Ray Microtomography
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| | - Michele Carrer
- Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Tabitha Eller
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| | - Lauren Schilling
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| |
Collapse
|
36
|
Yang SA, Salazar JL, Li-Kroeger D, Yamamoto S. Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila. Methods Mol Biol 2022; 2472:235-276. [PMID: 35674905 PMCID: PMC9396741 DOI: 10.1007/978-1-0716-2201-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare variants in the many genes related to Notch signaling cause diverse Mendelian diseases that affect myriad organ systems. In addition, genome- and exome-wide association studies have linked common and rare variants in Notch-related genes to common diseases and phenotypic traits. Moreover, somatic mutations in these genes have been observed in many types of cancer, some of which are classified as oncogenic and others as tumor suppressive. While functional characterization of some of these variants has been performed through experimental studies, the number of "variants of unknown significance" identified in patients with diverse conditions keeps increasing as high-throughput sequencing technologies become more commonly used in the clinic. Furthermore, as disease gene discovery efforts identify rare variants in human genes that have yet to be linked to a disease, the demand for functional characterization of variants in these "genes of unknown significance" continues to increase. In this chapter, we describe a workflow to functionally characterize a rare variant in a Notch signaling related gene that was found to be associated with late-onset Alzheimer's disease. This pipeline involves informatic analysis of the variant of interest using diverse human and model organism databases, followed by in vivo experiments in the fruit fly Drosophila melanogaster. The protocol described here can be used to study variants that affect amino acids that are not conserved between human and fly. By "humanizing" the almondex gene in Drosophila with mutant alleles and heterologous genomic rescue constructs, a missense variant in TM2D3 (TM2 Domain Containing 3) was shown to be functionally damaging. This, and similar approaches, greatly facilitate functional interpretations of genetic variants in the human genome and propel personalized medicine.
Collapse
Affiliation(s)
- Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
37
|
Xiao X, Guo L, Liao X, Zhou Y, Zhang W, Zhou L, Wang X, Liu X, Liu H, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Wang J, Li J, Jiao B, Shen L. The role of vascular dementia associated genes in patients with Alzheimer's disease: A large case-control study in the Chinese population. CNS Neurosci Ther 2021; 27:1531-1539. [PMID: 34551193 PMCID: PMC8611771 DOI: 10.1111/cns.13730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aim The role of vascular dementia (VaD)‐associated genes in Alzheimer's disease (AD) remains elusive despite similar clinical and pathological features. We aimed to explore the relationship between these genes and AD in the Chinese population. Methods Eight VaD‐associated genes were screened by a targeted sequencing panel in a sample of 3604 individuals comprising 1192 AD patients and 2412 cognitively normal controls. Variants were categorized into common variants and rare variants according to minor allele frequency (MAF). Common variant (MAF ≥ 0.01)‐based association analysis was conducted by PLINK 1.9. Rare variant (MAF < 0.01) association study and gene‐based aggregation testing of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test‐Optimal (SKAT‐O test), respectively. Age at onset (AAO) and Mini‐Mental State Examination (MMSE) association studies were performed with PLINK 1.9. Analyses were adjusted for age, gender, and APOE ε4 status. Results Four common COL4A1 variants, including rs874203, rs874204, rs16975492, and rs1373744, exhibited suggestive associations with AD. Five rare variants, NOTCH3 rs201436750, COL4A1 rs747972545, COL4A1 rs201481886, CST3 rs765692764, and CST3 rs140837441, showed nominal association with AD risk. Gene‐based aggregation testing revealed that HTRA1 was nominally associated with AD. In the AAO and MMSE association studies, variants in GSN, ITM2B, and COL4A1 reached suggestive significance. Conclusion Common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 may be implicated in AD pathogenesis. Besides, GSN, ITM2B, and COL4A1 are probably involved in the development of AD endophenotypes.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
38
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
39
|
Akhter F, Persaud A, Zaokari Y, Zhao Z, Zhu D. Vascular Dementia and Underlying Sex Differences. Front Aging Neurosci 2021; 13:720715. [PMID: 34566624 PMCID: PMC8457333 DOI: 10.3389/fnagi.2021.720715] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia after Alzheimer's disease (AD); where Alzheimer's accounts for 60-70% of cases of dementia and VaD accounts for 20% of all dementia cases. VaD is defined as a reduced or lack of blood flow to the brain that causes dementia. VaD is also known occasionally as vascular contributions to cognitive impairment and dementia (VCID) or multi-infarct dementia (MID). VCID is the condition arising from stroke and other vascular brain injuries that cause significant changes to memory, thinking, and behavior, and VaD is the most severe stage while MID is produced by the synergistic effects caused by multiple mini strokes in the brain irrespective of specific location or volume. There are also subtle differences in the presentation of VaD in males and females, but they are often overlooked. Since 1672 when the first case of VaD was reported until now, sex and gender differences have had little to no research done when it comes to the umbrella term of dementia in general. This review summarizes the fundamentals of VaD followed by a focus on the differences between sex and gender when an individual is diagnosed. In addition, we provide critical evidence concerning sex and gender differences with a few of the main risk factors of VaD including pre-existing health conditions and family history, gene variants, aging, hormone fluctuations, and environmental risk factors. Additionally, the pharmaceutical treatments and possible mitigation of risk factors is explored.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Alicia Persaud
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Younis Zaokari
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
- Neuroscience Graduate Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
40
|
Kano Y, Mizuta I, Ueda A, Nozaki H, Sakurai K, Onodera O, Ando Y, Yamada K, Yuasa H, Mizuno T. Heterozygous Cysteine-sparing NOTCH3 Variant p.Val237Met in a Japanese Patient with Suspected Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Intern Med 2021; 60:2479-2482. [PMID: 33678736 PMCID: PMC8381162 DOI: 10.2169/internalmedicine.6096-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 64-year-old Japanese man with recurrent cerebral ischemic events and cognitive impairment was suspected of having cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) because of a family history and brain magnetic resonance imaging findings of cerebral white matter hyperintensities. The cysteine-sparing variation p.Val237Met was identified in NOTCH3. An intensive skin biopsy showed negative results (no granular osmiophilic material or positive NOTCH3 immunostaining), suggesting that the patient's definite diagnosis and pathogenicity of p.Val237Met were uncertain. We additionally reviewed previous reports of two Japanese families with p.Val237Met.
Collapse
Affiliation(s)
- Yuya Kano
- Department of Neurology, Tosei General Hospital, Japan
- Department of Neurology, Nagoya City East Medical Center, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Science, Kumamoto University, Japan
| | - Hiroaki Nozaki
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Science, Kumamoto University, Japan
- Department of Amyloidosis Research, Nagasaki International University, Japan
| | - Kentaro Yamada
- Department of Neurology, Nagoya City East Medical Center, Japan
| | | | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
41
|
Antczak J, Rusin G, Słowik A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J Clin Med 2021; 10:jcm10132875. [PMID: 34203558 PMCID: PMC8267667 DOI: 10.3390/jcm10132875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/03/2023] Open
Abstract
Dementia is recognized as a healthcare and social burden and remains challenging in terms of proper diagnosis and treatment. Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic tool in various neurological diseases that noninvasively investigates cortical excitability and connectivity and can induce brain plasticity. This article reviews findings on TMS in common dementia types as well as therapeutic results. Alzheimer’s disease (AD) is characterized by increased cortical excitability and reduced cortical inhibition, especially as mediated by cholinergic neurons and as documented by impairment of short latency inhibition (SAI). In vascular dementia, excitability is also increased. SAI may have various outcomes, which probably reflects its frequent overlap with AD. Dementia with Lewy bodies (DLB) is associated with SAI decrease. Motor cortical excitability is usually normal, reflecting the lack of corticospinal tract involvement. DLB and other dementia types are also characterized by impairment of short interval intracortical inhibition. In frontotemporal dementia, cortical excitability is increased, but SAI is normal. Repetitive transcranial magnetic stimulation has the potential to improve cognitive function. It has been extensively studied in AD, showing promising results after multisite stimulation. TMS with electroencephalography recording opens new possibilities for improving diagnostic accuracy; however, more studies are needed to support the existing data.
Collapse
|
42
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
43
|
Guo X, Deng B, Zhong L, Xie F, Qiu Q, Wei X, Wang W, Xu J, Liu G, Hon WPT, Yenari MA, Zhu S, Wang Q. Fibrinogen is an Independent Risk Factor for White Matter Hyperintensities in CADASIL but not in Sporadic Cerebral Small Vessel Disease Patients. Aging Dis 2021; 12:801-811. [PMID: 34094643 PMCID: PMC8139197 DOI: 10.14336/ad.2020.1110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The relationship between fibrinogen and white matter hyperintensities (WMHs) are inconsistent. Whether there are different relationships between WMHs and fibrinogen in disparate subtypes of cerebral small vessel disease (CSVD) remains unknown. Here, we investigated the roles of plasma fibrinogen in sporadic CSVD (sCSVD) and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) patients. We performed a cross-sectional study that included 74 CSVD patients (19 CADASIL and 55 sporadic) and 74 age- and gender-matched healthy controls (HCs). Plasma fibrinogen was determined, and the severity of WMHs in CSVD patients was rated according to Fazekas scales. Univariate analysis and ordinal logistic regression were performed to evaluate the relationship between fibrinogen and the severity of WMHs in CSVD. Both CADASIL and sCSVD patients showed significantly higher plasma fibrinogen levels than HCs. No significant difference in the plasma fibrinogen level was observed between CADASIL and sCSVD. Univariate analysis and ordinal logistic regression indicated that fibrinogen is an independent risk factor for the severity of WMHs in CADASIL patients (odds ratio [OR] =1.064; 95% Confidence interval (CI, 1.004-1.127); p =0.037). However, age (odds ratio [OR] =1.093; 95% CI (1.033-1.156); P = 0.002), but not fibrinogen (odds ratio [OR] =1.004; 95% CI (0.997-1.011); P=0.262), is an independent risk factor for the severity of WMHs in sCSVD patients. Our results suggest that high levels of plasma fibrinogen are associated with the severity of WMHs in CADASIL but not in sCSVD patients, indicating that the role of fibrinogen may be different in disparate subtypes of CSVD. A better understanding of fibrinogen may yield insights into the pathogenesis of CSVD.
Collapse
Affiliation(s)
- Xingfang Guo
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Bin Deng
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Lizi Zhong
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Fen Xie
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Qing Qiu
- 2Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Xiaobo Wei
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Wenya Wang
- 3School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- 3School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ganqiang Liu
- 4School of Medicine, Sun Yat-sen University, Guangzhou, Guangzhou 510515, China
| | - Wong Peter Tsun Hon
- 5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Midori A Yenari
- 6Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Shuzhen Zhu
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| | - Qing Wang
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangdong 510282, China
| |
Collapse
|
44
|
Zampatti S, Ragazzo M, Peconi C, Luciano S, Gambardella S, Caputo V, Strafella C, Cascella R, Caltagirone C, Giardina E. Genetic Counselling Improves the Molecular Characterisation of Dementing Disorders. J Pers Med 2021; 11:474. [PMID: 34073306 PMCID: PMC8227097 DOI: 10.3390/jpm11060474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Dementing disorders are a complex group of neurodegenerative diseases characterised by different, but often overlapping, pathological pathways. Genetics have been largely associated with the development or the risk to develop dementing diseases. Recent advances in molecular technologies permit analyzing of several genes in a small time, but the interpretation analysis is complicated by several factors: the clinical complexity of neurodegenerative disorders, the frequency of co-morbidities, and the high phenotypic heterogeneity of genetic diseases. Genetic counselling supports the diagnostic path, providing an accurate familial and phenotypic characterisation of patients. In this review, we summarise neurodegenerative dementing disorders and their genetic determinants. Genetic variants and associated phenotypes will be divided into high and low impact, in order to reflect the pathologic continuum between multifactorial and mendelian genetic factors. Moreover, we report a molecular characterisation of genes associated with neurodegenerative disorders with cognitive impairment. In particular, the high frequency of rare coding genetic variants in dementing genes strongly supports the role of geneticists in both, clinical phenotype characterisation and interpretation of genotypic data. The smart application of exome analysis to dementia patients, with a pre-analytical selection on familial, clinical, and instrumental features, improves the diagnostic yield of genetic test, reduces time for diagnosis, and allows a rapid and personalised management of disease.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Serena Luciano
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Stefano Gambardella
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| |
Collapse
|
45
|
Moreno-García M, Arteche-López AR, Álvarez-Mora MI, Palma Milla C, Quesada Espinosa JF, Lezana Rosales JM, Sánchez Calvín MT, Gómez Manjón I, Gómez Rodríguez MJ, Mendez-Guerrero A, Villarejo-Galende A. First patient with mosaic NOTCH3 gene pathogenic variant. Unrevealed mosaicisms and importance of their detection. Am J Med Genet A 2020; 185:591-595. [PMID: 33305890 DOI: 10.1002/ajmg.a.61999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 01/14/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small vessel disease caused predominantly by pathogenic variants in NOTCH3 gene. Neither germline nor somatic mosaicism has been previously published in NOTCH3 gene. CADASIL is inherited in an autosomal dominant manner; only rare cases have been associated with de novo pathogenic variants. Mosaicism is more common than previously thought because mosaic variants often stay unrevealed. An apparently de novo variant might actually be a consequence of a parental mosaicism undetectable with Sanger sequencing, especially in the case of low grade mosaicism. Parental testing by sensitive tools like deep targeted next-generation sequencing (NGS) analysis could detect cases of unrevealed medium or low level mosaicism in patients tested by Sanger sequencing. Here, we report the first patient with mosaic NOTCH3 gene pathogenic variant to our knowledge; the allelic fraction in the leucocyte DNA was low (13%); the pathogenic variant was inhered by his two daughters. The patient was diagnosed by deep targeted NGS analysis after studying his two affected daughters. This report highlights the importance of parental testing by sensitive tools like deep targeted NGS analysis. Detection of mosaicism is of great importance for diagnosis and adequate family genetic counseling.
Collapse
Affiliation(s)
| | | | | | - Carmen Palma Milla
- Department of Genetics, University 12 de Octubre Hospital, Madrid, Spain
| | | | | | | | - Irene Gómez Manjón
- Department of Genetics, University 12 de Octubre Hospital, Madrid, Spain
| | | | | | - Alberto Villarejo-Galende
- Department of Neurology, University 12 de Octubre Hospital, Neurodegenerative Diseases Study Group, I+12, CIBERNED, Universidad Complutense, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|