1
|
Qian W, Xu X, Wu Y, Yu L, Wang C, Yan M, Yu R. Altered white matter microstructural integrity in patients with postherpetic neuralgia: a combined DTI and DTI-NODDI study. Front Neurosci 2025; 19:1552961. [PMID: 40040848 PMCID: PMC11876147 DOI: 10.3389/fnins.2025.1552961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Background Postherpetic neuralgia (PHN) is a debilitating condition resulting from herpes zoster infection, characterized by persistent pain that significantly impacts quality of life. This study aimed to investigate the white matter microstructural alterations associated with PHN and to assess the relationship between diffusion metrics and clinical symptoms. Methods A total of 29 patients with PHN, 28 patients recovering from herpes zoster (RHZ), and 27 healthy controls (HC) were recruited, and clinical assessments were obtained to evaluate pain intensity and psychological distress. Diffusion tensor imaging (DTI) data was collected, followed by analysis of diffusion and neurite orientation dispersion and density imaging (NODDI) metrics. Statistical analyses included ANOVA to compare groups and Pearson correlation coefficients to assess relationships between imaging metrics and clinical outcomes. Results PHN patients exhibited significantly altered white matter integrity, specifically in neurite density index (NDI) and orientation dispersion index, compared to both RHZ patients and HC. Significant correlations were also found between altered imaging metrics and clinical assessments of pain and emotional distress, with lower fractional anisotropy (FA) and NDI associated with higher pain scores and psychological symptoms. Conclusion Our study highlights significant microstructural changes in white matter tracts in patients with PHN, indicating compromised neural integrity that correlates with increased pain perception and emotional distress. NODDI demonstrated superior sensitivity in detecting these alterations compared to traditional DTI metrics, underscoring its potential for enhancing diagnostic and therapeutic approaches in managing chronic pain conditions like PHN.
Collapse
Affiliation(s)
- Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaopei Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Wu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
2
|
Chen X, Roberts N, Zheng Q, Peng Y, Han Y, Luo Q, Feng J, Luo T, Li Y. Comparison of diffusion tensor imaging (DTI) tissue characterization parameters in white matter tracts of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Eur Radiol 2024; 34:5263-5275. [PMID: 38175221 DOI: 10.1007/s00330-023-10550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE To investigate the microstructural properties of T2 lesion and normal-appearing white matter (NAWM) in 20 white matter tracts between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) and correlations between the tissue damage and clinical variables. METHODS The white matter (WM) compartment of the brain was segmented for 56 healthy controls (HC), 48 patients with MS, and 38 patients with NMOSD, and for the patients further subdivided into T2 lesion and NAWM. Subsequently, the diffusion tensor imaging (DTI) tissue characterization parameters of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared for 20 principal white matter tracts. The correlation between tissue damage and clinical variables was also investigated. RESULTS The higher T2 lesion volumes of 14 fibers were shown in MS compared to NMOSD. MS showed more microstructure damage in 13 fibers of T2 lesion, but similar microstructure in seven fibers compared to NMOSD. MS and NMOSD had microstructure damage of NAWM in 20 fibers compared to WM in HC, with more damage in 20 fibers in MS compared to NMOSD. MS patients showed higher correlation between the microstructure of T2 lesion areas and NAWM. The T2 lesion microstructure damage was correlated with duration and impaired cognition in MS. CONCLUSIONS Patients with MS and NMOSD show different patterns of microstructural damage in T2 lesion and NAWM areas. The prolonged disease course of MS may aggravate the microstructural damage, and the degree of microstructural damage is further related to cognitive impairment. CLINICAL RELEVANCE STATEMENT Microstructure differences between T2 lesion areas and normal-appearing white matter help distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. In multiple sclerosis, lesions rather than normal-appearing white matter should be a concern, because the degree of lesion severity correlated both with normal-appearing white matter damage and cognitive impairment. KEY POINTS • Multiple sclerosis and neuromyelitis optica spectrum disorder have different damage patterns in T2 lesion and normal-appearing white matter areas. • The microstructure damage of normal-appearing white matter is correlated with the microstructure of T2 lesion in multiple sclerosis and neuromyelitis optica spectrum disorder. • The microstructure damage of T2 lesion in multiple sclerosis is correlated with duration and cognitive impairment.
Collapse
Affiliation(s)
- Xiaoya Chen
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Neil Roberts
- Edinburgh Imaging Facility QMRI, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Qiao Zheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Peng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinzhou Feng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Crouse JJ, Park SH, Hermens DF, Lagopoulos J, Park M, Shin M, Carpenter JS, Scott EM, Hickie IB. Chronotype and subjective sleep quality predict white matter integrity in young people with emerging mental disorders. Eur J Neurosci 2024; 59:3322-3336. [PMID: 38650167 DOI: 10.1111/ejn.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Protecting brain health is a goal of early intervention. We explored whether sleep quality or chronotype could predict white matter (WM) integrity in emerging mental disorders. Young people (N = 364) accessing early-intervention clinics underwent assessments for chronotype, subjective sleep quality, and diffusion tensor imaging. Using machine learning, we examined whether chronotype or sleep quality (alongside diagnostic and demographic factors) could predict four measures of WM integrity: fractional anisotropy (FA), and radial, axial, and mean diffusivities (RD, AD and MD). We prioritised tracts that showed a univariate association with sleep quality or chronotype and considered predictors identified by ≥80% of machine learning (ML) models as 'important'. The most important predictors of WM integrity were demographics (age, sex and education) and diagnosis (depressive and bipolar disorders). Subjective sleep quality only predicted FA in the perihippocampal cingulum tract, whereas chronotype had limited predictive importance for WM integrity. To further examine links with mood disorders, we conducted a subgroup analysis. In youth with depressive and bipolar disorders, chronotype emerged as an important (often top-ranking) feature, predicting FA in the cingulum (cingulate gyrus), AD in the anterior corona radiata and genu of the corpus callosum, and RD in the corona radiata, anterior corona radiata, and genu of corpus callosum. Subjective quality was not important in this subgroup analysis. In summary, chronotype predicted altered WM integrity in the corona radiata and corpus callosum, whereas subjective sleep quality had a less significant role, suggesting that circadian factors may play a more prominent role in WM integrity in emerging mood disorders.
Collapse
Affiliation(s)
- Jacob J Crouse
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shin Ho Park
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Minji Park
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mirim Shin
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Joanne S Carpenter
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth M Scott
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Kamal F, Morrison C, Dadar M. Investigating the relationship between sleep disturbances and white matter hyperintensities in older adults on the Alzheimer's disease spectrum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12553. [PMID: 38476639 PMCID: PMC10927930 DOI: 10.1002/dad2.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION While studies report that sleep disturbance can have negative effects on brain vasculature, its impact on cerebrovascular diseases such as white matter hyperintensities (WMHs) in beta-amyloid-positive older adults remains unexplored. METHODS Sleep disturbance, WMH burden, and cognition in normal controls (NCs), and individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD), were examined at baseline and longitudinally. A total of 912 amyloid-positive participants were included (198 NC, 504 MCI, and 210 AD). RESULTS Individuals with AD reported more sleep disturbances than NC and MCI participants. Those with sleep disturbances had more WMHs than those without sleep disturbances in the AD group. Mediation analysis revealed an effect of regional WMH burden on the relationship between sleep disturbance and future cognition. DISCUSSION These results suggest that WMH burden and sleep disturbance increase from aging to AD. Sleep disturbance decreases cognition through increases in WMH burden. Improved sleep could mitigate the impact of WMH accumulation and cognitive decline.
Collapse
Affiliation(s)
- Farooq Kamal
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | | | - Mahsa Dadar
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| |
Collapse
|
5
|
Mohammadi S, Seyedmirzaei H, Salehi MA, Jahanshahi A, Zakavi SS, Dehghani Firouzabadi F, Yousem DM. Brain-based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav 2023; 17:541-569. [PMID: 37058182 PMCID: PMC10102695 DOI: 10.1007/s11682-023-00772-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with a wide range of symptoms such as mood decline, loss of interest, and feelings of guilt and worthlessness. Women develop depression more often than men, and the diagnostic criteria for depression mainly rely on female patients' symptoms. By contrast, male depression usually manifests as anger attacks, aggression, substance use, and risk-taking behaviors. Various studies have focused on the neuroimaging findings in psychiatric disorders for a better understanding of their underlying mechanisms. With this review, we aimed to summarize the existing literature on the neuroimaging findings in depression, separated by male and female subjects. A search was conducted on PubMed and Scopus for magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) studies of depression. After screening the search results, 15 MRI, 12 fMRI, and 4 DTI studies were included. Sex differences were mainly reflected in the following regions: 1) total brain, hippocampus, amygdala, habenula, anterior cingulate cortex, and corpus callosum volumes, 2) frontal and temporal gyri functions, along with functions of the caudate nucleus and prefrontal cortex, and 3) frontal fasciculi and frontal projections of corpus callosum microstructural alterations. Our review faces limitations such as small sample sizes and heterogeneity in populations and modalities. But in conclusion, it reflects the possible roles of sex-based hormonal and social factors in the depression pathophysiology.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
6
|
Arumugam A, Murat D, Javed A, Ali SA, Mahmoud I, Trabelsi K, Ammar A. Association of Sociodemographic Factors with Physical Activity and Sleep Quality in Arab and Non-Arab Individuals of Both Sexes during the COVID-19 Pandemic. Healthcare (Basel) 2023; 11:2200. [PMID: 37570440 PMCID: PMC10418443 DOI: 10.3390/healthcare11152200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
We explored the association of sociodemographic and anthropometric factors with self-reported physical activity (PA) and sleep quality in Arab and non-Arab individuals of both sexes during the COVID-19 pandemic. In this cross-sectional study, 638 participants (those recovered from COVID-19 = 149, and non-infected = 489) of both sexes aged 18-55 years were recruited. Their sociodemographic and anthropometric information, PA (self-reported using the International Physical Activity Questionnaire Short-form [IPAQ-SF)]) and sleep quality (self-reported using the Pittsburgh Sleep Quality Index [PSQI]) were documented. The association between participants' characteristics, PA levels, and sleep quality were determined using the chi-squared test. Variables significantly associated with IPAQ and PSQI in bivariate analyses were included in a multivariate binary logistic regression model. Men were more active than women (odds ratio [OR] = 1.66, p = 0.010), and non-Arab participants were more active than Arab ones (OR = 1.49, p = 0.037). Participants ≥40 years, men, non-Arab participants, and those who were working were more likely to have a good sleep quality than those ≤40 years (OR 1.70, p = 0.048), women (OR 1.10, p = 0.725), Arab individuals (OR 1.95, p = 0.002), and unemployed people (OR 2.76, p = 0.007). Male and non-Arab participants seemed to have a better self-reported PA and sleep quality compared to female and Arab participants, during the pandemic.
Collapse
Affiliation(s)
- Ashokan Arumugam
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.A.)
- Neuromusculoskeletal Rehabilitation Research Group, RIMHS—Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sustainable Engineering Asset Management Research Group, RISE—Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Danya Murat
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.A.)
| | - Asma Javed
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.A.)
| | - Sara Atef Ali
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.A.)
| | - Ibrahim Mahmoud
- Department of Family Medicine and Behavioural Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
7
|
Kim M, Lee J, Kim N, Hwang Y, Lee KH, Lee J, Lee YJ, Kim SJ. The Influence of Life Stress and Sleep Disturbance on White Matter Integrity. Psychiatry Investig 2023; 20:439-444. [PMID: 37253469 DOI: 10.30773/pi.2022.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/05/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE This study investigated whether sleep and stress mutually interact to induce changes in white matter integrity. METHODS Diffusion tensor imaging (DTI) was conducted on 36 participants (male=22, female=14; mean age=38.33±12.78 years). Participants were divided into three groups depending on their sleep quality and stress levels: poor sleepers with stress, poor sleepers without stress, and good sleepers. Sleep quality and stress level were evaluated using the Pittsburgh Sleep Quality Index and the Life Experiences Survey, respectively. Fractional anisotropy (FA) values were calculated employing DTI tractography. RESULTS After controlling for age and sex, poor sleepers with stress exhibited a lower FA of the left inferior cerebellar peduncle (ICP) than did poor sleepers without stress (t=2.81, p=0.02). Poor sleepers without stress showed a higher FA of the right middle longitudinal fasciculus (MdLF) than did good sleepers (t=3.35, p=0.006). CONCLUSION The current study reports the effects of sleep, stress, and their interaction on the white matter integrities of the ICP and MdLF. ICP change seems to be associated with sleep disturbances related to stress, while MdLF change would be associated with sleep disturbances unrelated to stress.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Psychiatry, Sungkyunkwan University, College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jiye Lee
- Department of Psychiatry, Sungkyunkwan University, College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Nambeom Kim
- Department of Biomedical Engineering Research Center, Gachon University, Incheon, Republic of Korea
| | - Yunjee Hwang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Kyung Hwa Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University, College of Medicine and Hospital, Seoul, Republic of Korea
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jooyoung Lee
- Department of Psychiatry, Sungkyunkwan University, College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University, College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seog Ju Kim
- Department of Psychiatry, Sungkyunkwan University, College of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Bruce HA, Kochunov P, Kvarta MD, Goldwaser EL, Chiappelli J, Schwartz A, Lightner S, Endres J, Yuen A, Ma Y, Van der Vaart A, Hatch KS, Gao S, Ye Z, Wu Q, Chen S, Mitchell BD, Hong LE. Frontal white matter association with sleep quality and the role of stress. J Sleep Res 2023; 32:e13669. [PMID: 35698853 PMCID: PMC9748025 DOI: 10.1111/jsr.13669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
Abstract
An important measure of brain health is the integrity of white matter connectivity structures that link brain regions. Studies have found an association between poorer sleep quality and decreased white matter integrity. Stress is among the strongest predictors of sleep quality. This study aimed to evaluate the association between sleep quality and white matter and to test if the relationship persisted after accounting for stress. White matter microstructures were measured by diffusion tensor imaging in a population of Old Order Amish/Mennonite (N = 240). Sleep quality was determined by the Pittsburgh Sleep Quality Index. Current stress levels were measured by the perceived stress scale. Exposure to lifetime stress was measured by the lifetime stressor inventory. Microstructures of four white matter tracts: left and right anterior limbs of internal capsule, left anterior corona radiata, and genu of corpus callosum were significantly correlated with sleep quality (all p ≤ 0.001). The current stress level was a significant predictor of sleep quality (p ≤ 0.001) while lifetime stress was not. PSQI remained significantly associated with white matter integrity in these frontal tracts (all p < 0.01) after accounting for current stress and lifetime stress, while current and lifetime stress were not significant predictors of white matter in any of the four models. Sleep quality did not have any substantial mediation role between stress and white matter integrity. Sleep quality was significantly associated with several frontal white matter tracts that connect brain structures important for sleep regulation regardless of current or past stress levels.
Collapse
Affiliation(s)
- Heather A Bruce
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Mark D Kvarta
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Eric L Goldwaser
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Adina Schwartz
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Samantha Lightner
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jane Endres
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexa Yuen
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yizhou Ma
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Andrew Van der Vaart
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Kathryn S Hatch
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Si Gao
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Zhenyao Ye
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Qiong Wu
- University of Maryland, College Park, Maryland, USA
| | - Shuo Chen
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Rasmussen JØ, Nordholm D, Glenthøj LB, Jensen MA, Garde AH, Ragahava JM, Jennum PJ, Glenthøj BY, Nordentoft M, Baandrup L, Ebdrup BH, Kristensen TD. White matter microstructure and sleep-wake disturbances in individuals at ultra-high risk of psychosis. Front Hum Neurosci 2022; 16:1029149. [PMID: 36393990 PMCID: PMC9649829 DOI: 10.3389/fnhum.2022.1029149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Aim White matter changes in individuals at ultra-high risk for psychosis (UHR) may be involved in the transition to psychosis. Sleep-wake disturbances commonly precede the first psychotic episode and predict development of psychosis. We examined associations between white matter microstructure and sleep-wake disturbances in UHR individuals compared to healthy controls (HC), as well as explored the confounding effect of medication, substance use, and level of psychopathology. Methods Sixty-four UHR individuals and 35 HC underwent clinical interviews and diffusion weighted imaging. Group differences on global and callosal mean fractional anisotropy (FA) was tested using general linear modeling. Sleep-wake disturbances were evaluated using the subjective measures disturbed sleep index (DSI) and disturbed awakening index (AWI) from the Karolinska Sleep Questionnaire, supported by objective sleep measures from one-night actigraphy. The primary analyses comprised partial correlation analyses between global FA/callosal FA and sleep-wake measures. Secondary analyses investigated multivariate patterns of covariance between measures of sleep-wake disturbances and FA in 48 white matter regions of interest using partial least square correlations. Results Ultra-high risk for psychosis individuals displayed lower global FA (F = 14.56, p < 0.001) and lower callosal FA (F = 11.34, p = 0.001) compared to HC. Subjective sleep-wake disturbances were significantly higher among the UHR individuals (DSI: F = 27.59, p < 0.001, AWI: F = 36.42, p < 0.001). Lower callosal FA was correlated with increased wake after sleep onset (r = -0.34, p = 0.011) and increased sleep fragmentation index (r = -0.31, p = 0.019) in UHR individuals. Multivariate analyses identified a pattern of covariance in regional FA which were associated with DSI and AWI in UHR individuals (p = 0.028), but not in HC. Substance use, sleep medication and antipsychotic medication did not significantly confound these associations. The association with objective sleep-wake measures was sustained when controlling for level of depressive and UHR symptoms, but symptom level confounded the covariation between FA and subjective sleep-wake measures in the multivariate analyses. Conclusion Compromised callosal microstructure in UHR individuals was related to objectively observed disruptions in sleep-wake functioning. Lower FA in ventrally located regions was associated with subjectively measured sleep-wake disturbances and was partly explained by psychopathology. These findings call for further investigation of sleep disturbances as a potential treatment target.
Collapse
Affiliation(s)
- Jesper Ø. Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Dorte Nordholm
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Louise B. Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie A. Jensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne H. Garde
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra M. Ragahava
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Poul J. Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina D. Kristensen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| |
Collapse
|
10
|
Maurer JM, Paul S, Edwards BG, Anderson NE, Nyalakanti PK, Harenski CL, Decety J, Kiehl KA. Reduced structural integrity of the uncinate fasciculus in incarcerated women scoring high on psychopathy. Brain Imaging Behav 2022; 16:2141-2149. [PMID: 35882762 PMCID: PMC11423388 DOI: 10.1007/s11682-022-00684-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2022] [Indexed: 12/01/2022]
Abstract
Both men and women scoring high on psychopathy exhibit similar structural and functional neural abnormalities, including reduced volume of the orbitofrontal cortex (OFC) and reduced hemodynamic activity in the amygdala during affective processing experimental paradigms. The uncinate fasciculus (UF) is a white matter (WM) tract that connects the amygdala to the OFC. Reduced structural integrity of the UF, measured via fractional anisotropy (FA), is commonly associated with men scoring high on psychopathy. However, only one study to date has investigated the relationship between psychopathic traits and UF structural integrity in women, recruiting participants from a community sample. Here, we investigated whether Hare Psychopathy Checklist-Revised (PCL-R) facet scores (measuring interpersonal, affective, lifestyle/behavioral, and antisocial psychopathic traits, respectively) were associated with reduced FA in the left and right UF in a sample of 254 incarcerated women characterized by a wide range of psychopathy scores. We observed that PCL-R Facet 3 scores, assessing lifestyle/behavioral psychopathic traits, were associated with reduced FA in the left and right UF, even when controlling for participant's age and history of previous substance use. The results obtained in the current study help improve our understanding of structural abnormalities associated with women scoring high on psychopathy. Specifically, reduced UF structural integrity may contribute to some of the deficits commonly associated with women scoring high on psychopathy, including emotion dysregulation.
Collapse
Affiliation(s)
- J Michael Maurer
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA.
| | - Subhadip Paul
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, West Bengal, India
- JIVAN- Centre for Research in Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, West Bengal, India
- Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), P.O.: Belur Math, Howrah, West Bengal, India
| | - Bethany G Edwards
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | | | - Carla L Harenski
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA
| | - Jean Decety
- Department of Psychology, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Kent A Kiehl
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM, 87106, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Ramirez J, Berberian SA, Breen DP, Gao F, Ozzoude M, Adamo S, Scott CJ, Berezuk C, Yhap V, Mestre TA, Marras C, Tartaglia MC, Grimes D, Jog M, Kwan D, Tan B, Binns MA, Arnott SR, Bartha R, Symons S, Masellis M, Black SE, Lang AE. Small and Large Magnetic Resonance Imaging–Visible Perivascular Spaces in the Basal Ganglia of Parkinson's Disease Patients. Mov Disord 2022; 37:1304-1309. [DOI: 10.1002/mds.29010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Joel Ramirez
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - Stephanie A. Berberian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - David P. Breen
- Centre for Clinical Brain Sciences University of Edinburgh Edinburgh United Kingdom
- Anne Rowling Regenerative Neurology Clinic University of Edinburgh Edinburgh United Kingdom
- Usher Institute of Population Health Sciences and Informatics University of Edinburgh Edinburgh United Kingdom
| | - Fuqiang Gao
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - Miracle Ozzoude
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Tanz Centre for Research in Neurodegenerative Diseases University of Toronto Toronto Ontario Canada
| | - Sabrina Adamo
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - Christopher J.M. Scott
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - Courtney Berezuk
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - Vanessa Yhap
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
| | - Tiago A. Mestre
- Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute University of Ottawa Ottawa Ontario Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital Toronto Ontario Canada
| | - Maria C. Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases University of Toronto Toronto Ontario Canada
- Division of Neurology, Toronto Western Hospital University Health Network Toronto Ontario Canada
| | - David Grimes
- University of Ottawa Brain and Mind Research Institute Ottawa Hospital Research Institute Ottawa Ontario Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Donna Kwan
- Queen's University, Centre for Neuroscience Studies Kingston Ontario Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences Centre Toronto Ontario Canada
| | - Malcolm A. Binns
- Rotman Research Institute, Baycrest Health Sciences Centre Toronto Ontario Canada
| | - Stephen R. Arnott
- Rotman Research Institute, Baycrest Health Sciences Centre Toronto Ontario Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Department of Medical Biophysics University of Western Ontario London Ontario Canada
| | - Sean Symons
- Department of Medical Imaging University of Toronto, Sunnybrook Health Sciences Centre Toronto Ontario Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Department of Medicine (Neurology) Sunnybrook Health Sciences Centre and University of Toronto Toronto Ontario Canada
| | - Sandra E. Black
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute University of Toronto Toronto Ontario Canada
- Rotman Research Institute, Baycrest Health Sciences Centre Toronto Ontario Canada
- Department of Medicine (Neurology) Sunnybrook Health Sciences Centre and University of Toronto Toronto Ontario Canada
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital Toronto Ontario Canada
| | | |
Collapse
|
12
|
Raja R, Na X, Badger TM, Ou X. Neural correlates of sleep quality in children: Sex-specific associations shown by brain diffusion tractography. J Neuroimaging 2022; 32:530-543. [PMID: 35041231 PMCID: PMC9173651 DOI: 10.1111/jon.12964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/25/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Sleep quality is important for healthy growth and development of children. We aimed to identify associations between sleep disturbances in healthy children without clinical diagnosis of sleep disorders and brain white matter (WM) microstructure using an advanced diffusion-weighted magnetic resonance imaging (DW-MRI) based tractography analysis, and to explore whether there are sex differences in these associations. METHODS Brain DW-MRI data were collected from sixty-two 8-year-old children (28 boys, 34 girls) whose parents also completed Children's Sleep Habits Questionnaire (CSHQ). Track-weighted imaging (TWI) measures were computed from the DW-MRI data for 37 WM tracts in each subject. Sex-specific partial correlation analyses were performed to evaluate correlations between TWI measures and a set of sleep disturbance scores derived from the CSHQ. RESULTS Significant correlations (P < .05, FDR-corrected; r: .48-.67) were identified in 13 WM tracts between TWI and sleep disturbance scores. Sexually dimorphic differences in correlations between sleep disturbance scores and WM microstructure measurements were observed. Specifically, in boys, daytime sleepiness positively correlated with track-weighted mean or radial diffusivity in 10 WM tracts (bilateral arcuate fasciculus, left cingulum, right middle longitudinal fasciculus, and three bilateral segments of superior longitudinal fasciculus). In girls, total CSHQ score, night walking, or sleep onset delay negatively correlated with track-weighted fractional anisotropy or axial diffusivity in 4 WM tracts (bilateral inferior longitudinal fasciculus and uncinate fasciculus). CONCLUSIONS The findings suggest that sleep disturbances without clinical diagnosis of sleep disorders are associated with lower WM microstructural integrity in children. Additionally, the associations possess unique patterns in boys and girls.
Collapse
Affiliation(s)
- Rajikha Raja
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thomas M Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA.,Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Guo Y, Yang X, Yuan Z, Qiu J, Lu W. A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches. J Neural Eng 2022; 19. [PMID: 35038689 DOI: 10.1088/1741-2552/ac4bfe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain age, which is predicted using neuroimaging data, has become an important biomarker in aging research. This study applied diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) model to predict age respectively, with the purpose of evaluating which diffusion model is more accurate in estimating age and revealing age-related changes in the brain. APPROACH Diffusion MRI data of 125 subjects from two sites were collected. Fractional anisotropy (FA) and quantitative anisotropy (QA) from the two diffusion models were calculated and were used as features of machine learning models. Sequential backward elimination algorithm was used for feature selection. Six machine learning approaches including linear regression, ridge regression, support vector regression (SVR) with linear kernel, quadratic kernel and radial basis function (RBF) kernel and feedforward neural network were used to predict age using FA and QA features respectively. MAIN RESULTS Age predictions using FA features were more accurate than predictions using QA features for all the 6 machine learning algorithms. Post-hoc analysis revealed that FA was more sensitive to age-related white matter alterations in the brain. In addition, SVR with RBF kernel based on FA features achieved better performances than the competing algorithms with MAE ranging from 7.74 to 10.54, MSE ranging from 87.79 to 150.86, and nMSE ranging from 0.05 to 0.14 Significance: FA from DTI model was more suitable than QA from GQI model in age prediction. FA metric was more sensitive to age-related white matter changes in the brain and FA of several brain regions could be used as white matter biomarkers in aging.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Radiology, Shandong First Medical University, No.619 Changcheng Road, Jinan, Shandong, 250000, CHINA
| | - Xi Yang
- Pennsylvania State University, Department of Mathematics, The Pennsylvania State University, University Park, PA, 16801, USA, State College, Pennsylvania, 16801, UNITED STATES
| | - Zilong Yuan
- Hubei Cancer Hospital, No. 116 South Zhuodaoquan Road, Wuhan, Hubei, 430079, CHINA
| | - Jianfeng Qiu
- Shandong Medical University, No. 6699 Qingdao Road, Jinan, 250100, CHINA
| | - Weizhao Lu
- Department of Radiology, Taishan Medical University, No.619 Changcheng Road, Taian, Shandong, 271016, CHINA
| |
Collapse
|
14
|
Reyes S, Rimkus CDM, Lozoff B, Algarin C, Peirano P. Nighttime Sleep Characteristics and White Matter Integrity in Young Adults. Nat Sci Sleep 2022; 14:1363-1373. [PMID: 35965887 PMCID: PMC9364986 DOI: 10.2147/nss.s360311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Sleep is essential for life and plays a key role for optimal physiology, brain functioning, and health. Evidence suggests a relation between sleep and cerebral white matter integrity. Human studies report that sleep duration shows a U-shaped association with brain functioning. We hypothesized that participants with longer or shorter sleep time in the nighttime period show altered microstructural white matter integrity. PARTICIPANTS AND METHODS Seventy-three young adult participants were evaluated. Sleep-wake cycle parameters were assessed objectively using actigraphy. Diffusion tensor imaging studies were performed to assess white matter integrity using fractional anisotropy and mean, axial, and radial diffusivities. Relations between white matter microstructure indexes and sleep parameters were investigated through tract-based spatial statistics. Participants were grouped according to their nocturnal total sleep time: 27 in the Reference sleep group (6.5-8.0 h), 23 in the Short sleep group (<6.5 h) and 23 in the Long sleep group (>8.0 h). RESULTS Compared with the Reference sleep group, participants in the Long sleep group showed lower fractional anisotropy (p < 0.05) and higher radial diffusivity (p < 0.05) values in white matter tracts linked to sleep regulation (corona radiata, body of the corpus callosum, superior longitudinal fasciculus, and anterior thalamic radiation). CONCLUSION This pattern of reduced fractional anisotropy and increased radial diffusivity in the Long sleep group indicates an association between sleep duration and lower integrity of myelin sheaths. Because myelin is continuously remodeled in the brain, nighttime sleep characteristics appear to be a key player for its quality and maintenance.
Collapse
Affiliation(s)
- Sussanne Reyes
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Carolina de Medeiros Rimkus
- Laboratory of Medical Investigation (LIM-44), Department of Radiology and Oncology, Faculty of Medicine, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Betsy Lozoff
- Department of Pediatrics and Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Cecilia Algarin
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Peirano
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|