1
|
Xian D, Yang S, Liu Y, Liu Q, Huang D, Wu Y. MicroRNA-196a-5p facilitates the onset and progression via targeting ITM2B in esophageal squamous cell carcinoma. Pathol Int 2024; 74:129-138. [PMID: 38289121 DOI: 10.1111/pin.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy affecting the digestive tract, with an increasing incidence rate worldwide. Recently, numerous studies revealed that microRNAs were associated with gene expression regulation, particularly their involvement in the regulation of tumor cells, garnering widespread attention. Here, we discovered that miR-196a-5p was significantly upregulated in both ESCC tissues and cells, which was correlated with an unfavorable prognosis. Series functional in vitro investigations have confirmed that silencing miR-196a-5p obviously restrained the ESCC cells malignant phenotypes and promoted apoptosis. Bioinformatics analysis and rescue experiments revealed that miR-196a-5p directly targeted ITM2B, exerting influence on the development of ESCC cells through negative regulation of ITM2B expression. Xenograft mouse models were established for conducting in vivo experiments, providing further confirmation of the regulatory mechanism and biological significance of the miR-196a-5p/ITM2B axis in ESCC. Our research demonstrated miR-196a-5p promoted ESCC malignant progression by interacting with ITM2B, thereby providing novel clues and potential targets for the new diagnosis and thereby of ESCC.
Collapse
Affiliation(s)
- Dubiao Xian
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Shubo Yang
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Yunzhong Liu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Qingfeng Liu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Ding Huang
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Yuechang Wu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| |
Collapse
|
2
|
Jiang Y, Wan M, Xiao X, Lin Z, Liu X, Zhou Y, Liao X, Lin J, Zhou H, Zhou L, Weng L, Wang J, Guo J, Jiang H, Zhang Z, Xia K, Li J, Tang B, Jiao B, Shen L. GSN gene frameshift mutations in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2023; 94:436-447. [PMID: 36650038 DOI: 10.1136/jnnp-2022-330465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aβ42, Aβ40 and Aβ42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aβ-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aβ42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - XueWen Xiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jingyi Lin
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Key Laboratory of Molecular Precision Medicine of Hunan Province, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Bollati M, Diomede L, Giorgino T, Natale C, Fagnani E, Boniardi I, Barbiroli A, Alemani R, Beeg M, Gobbi M, Fakin A, Mastrangelo E, Milani M, Presciuttini G, Gabellieri E, Cioni P, de Rosa M. A novel hotspot of gelsolin instability triggers an alternative mechanism of amyloid aggregation. Comput Struct Biotechnol J 2021; 19:6355-6365. [PMID: 34938411 PMCID: PMC8649582 DOI: 10.1016/j.csbj.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Gelsolin comprises six homologous domains, named G1 to G6. Single point substitutions in this protein are responsible for AGel amyloidosis, a hereditary disease causing progressive corneal lattice dystrophy, cutis laxa, and polyneuropathy. Although several different amyloidogenic variants of gelsolin have been identified, only the most common mutants present in the G2 domain have been thoroughly characterized, leading to clarification of the functional mechanism. The molecular events underlying the pathological aggregation of 3 recently identified mutations, namely A551P, E553K and M517R, all localized at the interface between G4 and G5, are here explored for the first time. Structural studies point to destabilization of the interface between G4 and G5 due to three structural determinants: β-strand breaking, steric hindrance and/or charge repulsion, all implying impairment of interdomain contacts. Such rearrangements decrease the temperature and pressure stability of gelsolin but do not alter its susceptibility to furin cleavage, the first event in the canonical aggregation pathway. These variants also have a greater tendency to aggregate in the unproteolysed forms and exhibit higher proteotoxicity in a C. elegans-based assay. Our data suggest that aggregation of G4G5 variants follows an alternative, likely proteolysis-independent, pathway.
Collapse
Affiliation(s)
- Michela Bollati
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Toni Giorgino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa Fagnani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Irene Boniardi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Rebecca Alemani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Eloise Mastrangelo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Mario Milani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | - Edi Gabellieri
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Matteo de Rosa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| |
Collapse
|
4
|
Xiao X, Guo L, Liao X, Zhou Y, Zhang W, Zhou L, Wang X, Liu X, Liu H, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Wang J, Li J, Jiao B, Shen L. The role of vascular dementia associated genes in patients with Alzheimer's disease: A large case-control study in the Chinese population. CNS Neurosci Ther 2021; 27:1531-1539. [PMID: 34551193 PMCID: PMC8611771 DOI: 10.1111/cns.13730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aim The role of vascular dementia (VaD)‐associated genes in Alzheimer's disease (AD) remains elusive despite similar clinical and pathological features. We aimed to explore the relationship between these genes and AD in the Chinese population. Methods Eight VaD‐associated genes were screened by a targeted sequencing panel in a sample of 3604 individuals comprising 1192 AD patients and 2412 cognitively normal controls. Variants were categorized into common variants and rare variants according to minor allele frequency (MAF). Common variant (MAF ≥ 0.01)‐based association analysis was conducted by PLINK 1.9. Rare variant (MAF < 0.01) association study and gene‐based aggregation testing of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test‐Optimal (SKAT‐O test), respectively. Age at onset (AAO) and Mini‐Mental State Examination (MMSE) association studies were performed with PLINK 1.9. Analyses were adjusted for age, gender, and APOE ε4 status. Results Four common COL4A1 variants, including rs874203, rs874204, rs16975492, and rs1373744, exhibited suggestive associations with AD. Five rare variants, NOTCH3 rs201436750, COL4A1 rs747972545, COL4A1 rs201481886, CST3 rs765692764, and CST3 rs140837441, showed nominal association with AD risk. Gene‐based aggregation testing revealed that HTRA1 was nominally associated with AD. In the AAO and MMSE association studies, variants in GSN, ITM2B, and COL4A1 reached suggestive significance. Conclusion Common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 may be implicated in AD pathogenesis. Besides, GSN, ITM2B, and COL4A1 are probably involved in the development of AD endophenotypes.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
5
|
Jiang Y, Xiao X, Wen Y, Wan M, Zhou L, Liu X, Wang X, Guo L, Liu H, Zhou Y, Wang J, Liao X, Shen L, Jiao B. Genetic effect of MTHFR C677T, A1298C, and A1793G polymorphisms on the age at onset, plasma homocysteine, and white matter lesions in Alzheimer's disease in the Chinese population. Aging (Albany NY) 2021; 13:11352-11362. [PMID: 33833133 PMCID: PMC8109119 DOI: 10.18632/aging.202827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
Background: Three polymorphisms in the Methylenetetrahydrofolate reductase (MTHFR) gene (C677T, A1298C, and A1793G) were reported associated with AD. However, their genotype distributions and associations with age at onset (AAO), homocysteine, and white matter lesions (WML) were unclear in the Chinese AD population. Method: We determined the presence of C677T, A1298C, and A1793G polymorphisms in the MTHFR gene using Sanger sequencing in a Chinese cohort comprising 721 AD patients (318 early-onset AD patients (EOAD) and 403 late-onset AD patients (LOAD)) and 365 elderly controls. Additionally, the homocysteine level and WML were evaluated in 121 AD patients. Results: The frequency of allele T of C677T polymorphism was significantly higher in AD patients than in controls (P = 0.040), while no statistical difference was observed in A1298C and A1793G (P > 0.05). Besides, genotype distributions of C677T and A1298C polymorphisms statistically varied between AD patients and controls (P = 0.021, P = 0.012). Moreover, the AAO was significantly lower in CT/TT (C677T) genotypes carriers (P = 0.042) and higher in AC/CC (A1298C) and AG/GG (A1793G) genotypes carriers (P = 0.034, P = 0.009) in patients with LOAD. We also found that patients with CT/TT (C677T) genotypes were prone to present an increased homocysteine level (P = 0.036) and higher Fazekas score (P = 0.024). In comparison, patients with AG/GG genotypes (A1793G) had a significantly lower Fazekas score (P = 0.013). Conclusions: The genotype distributions of C677T and A1298C polymorphisms are associated with AD in the Chinese population. Moreover, AD patients with C677T polymorphism are prone to present an earlier onset, higher homocysteine level, and more severe WML.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|