1
|
Wu F, Dallaire-Théroux C, Michaud É, Bergeron F, Lavoie M, Soucy JP, Dirani A, Laforce RJ. Diagnosing neurodegenerative disorders using retina as an external window: A systematic review of OCT-MRI correlations. J Alzheimers Dis 2025:13872877251331231. [PMID: 40255034 DOI: 10.1177/13872877251331231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BackgroundRecent studies have explored optical coherence tomography (OCT) and OCT-angiography (OCT-A) as biomarkers for Alzheimer's disease (AD). However, correlations between OCT/OCT-A and neurodegeneration metrics remain underexplored.ObjectiveWe performed a systematic review of OCT/OCT-A and structural brain imaging using MRI across various neurodegenerative disorders.MethodsWe searched Medline, Embase, and various other databases from January to June 2023 using keywords regarding neurodegenerative conditions and OCT/OCT-A. Out of 2962 citations. 93 articles were reviewed, and 28 met our inclusion criteria.ResultsLayer-or-region-specific retinal metrics were the most promising for non-vascular neurodegeneration, while vascular retinal parameters had the unique capacity to reflect vascular lesions. Both types of biomarkers correlated with global brain atrophy. Microstructural brain alterations best correlated with layer-specific thinning of retina.ConclusionsA better understanding of associations between retinal and brain lesions could eventually lead to the clinical application of retinal biomarkers for the early diagnosis of neurodegenerative conditions.
Collapse
Affiliation(s)
- Fei Wu
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Caroline Dallaire-Théroux
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
- Division of Neuroscience, Hôpital de l'Enfant-Jésus, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Élodie Michaud
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| | | | - Monica Lavoie
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Ali Dirani
- Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre universitaire d'ophtalmologie, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Robert Jr Laforce
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
2
|
McCool S, Smith JC, Sladek A, Fan S, Van Hook MJ. Retinal and thalamic alterations in the 5xFAD mouse model of Alzheimer's disease. PLoS One 2025; 20:e0319397. [PMID: 40029927 PMCID: PMC11875347 DOI: 10.1371/journal.pone.0319397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/01/2025] [Indexed: 03/06/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles that lead to decreased quality of life due to behavioral, motor, and cognitive impairments. Due to the widespread pathological nature of AD, many brain regions are affected by Aβ plaques including regions important for vision such as the lateral geniculate nucleus (LGN) of the thalamus which is critical for relaying signals from the retina to the primary visual cortex. Using a wide range of techniques including electrophysiological approaches, in vivo and ex vivo imaging methods, and immunohistochemistry in a mouse model with progressing amyloidosis (5xFAD), the goal of this study was to determine whether AD-like pathology disrupts neuronal and synaptic structure and function in the visual system. In vivo electroretinogram recordings revealed photoreceptor dysfunction in the 6- and 9-month-old 5xFAD mice, while optical coherence tomography indicated no changes in 5xFAD retinal thickness from 9 to 12 months. In the dorsolateral geniculate nucleus (dLGN), the rodent homolog of the primate LGN, we identified decreased densities of retinal ganglion cell axon terminals and fewer thalamocortical (TC) neuron cell bodies. No detectable deficits in excitatory synaptic function or TC neuron dendritic structure were seen in the dLGN, and reflexive visual behavior was also found to be normal in the 5xFAD mice. These results indicate relatively modest amyloid-triggered dysfunction in these stages of the visual system suggesting that Aβ plaque formation may play only a small role in the visual system dysfunction seen in AD patients. These results may also point to potential compensatory mechanisms that preserve function of visual pathways in the 5xFAD visual system.
Collapse
Affiliation(s)
- Shaylah McCool
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jennie C. Smith
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Asia Sladek
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shan Fan
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Matthew J. Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
3
|
Li J, You J, Li Z, Zang J, Wu L, Zhao T. Progress and prospects of Parkinson's disease with depression research: A global bibliometric analysis based on CiteSpace. Medicine (Baltimore) 2025; 104:e41537. [PMID: 39960944 PMCID: PMC11835133 DOI: 10.1097/md.0000000000041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder marked by motor impairments such as stiffness, involuntary shaking, and slowed movement. In addition, PD patients frequently experience nonmotor symptoms, especially depression. This study uses a mixed-methods scientometric analysis to review global research trends and advancements in PD and depression. This analysis is vital for clinicians, researchers, and policymakers, identifying knowledge gaps and directing future research efforts. METHODS We conducted a comprehensive literature review on PD and depression using the Web of Science database from 2004 to 2023, facilitated by CiteSpace 6.1.R6. Our analysis examined collaborations among authors, institutions, countries, and keywords, incorporating insights from RCTs and qualitative studies. We calculated effect sizes and confidence intervals with precision. Ethical approval was not required as the study used publicly available data without personal information. RESULTS Our analysis included 3048 research papers and 915 reviews, involving 17,927 authors and 12,466 institutions. The United States and the University of Toronto led in publications. Studies revealed significant effect sizes with narrow confidence intervals, particularly on the prevalence and impact of depression in PD patients. High-frequency keywords included "Parkinson's disease," "depression," "quality of life," "non-motor symptom," and "dementia." Visual mapping identified critical research nodes and future directions. CONCLUSION Over the past 2 decades, research on the PD-depression link has accelerated. Our analysis highlights prevailing trends and critical areas, providing evidence-based recommendations for therapeutic strategies. This study offers valuable insights for clinicians and researchers, emphasizing future research priorities to improve patient outcomes.
Collapse
Affiliation(s)
- Jianlin Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jianhang You
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Zaipu Li
- School of Clinical Medicine, Jining Medical University, Jining, Shandong Province, China
| | - Jing Zang
- Department of Neurology, The People’s Hospital of Rizhao, Rizhao, Shandong Province, China
| | - Lin Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
- Department of Neurology, The People’s Hospital of Rizhao, Rizhao, Shandong Province, China
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory of Perioperative Precise Anesthesia and Organ Protection Mechanism Research, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao, Rizhao, Shandong Province, China
| | - Tao Zhao
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory of Perioperative Precise Anesthesia and Organ Protection Mechanism Research, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao, Rizhao, Shandong Province, China
- School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| |
Collapse
|
4
|
Wang R, Cai J, Gao Y, Tang Y, Gao H, Qin L, Cai H, Yang F, Ren Y, Luo C, Feng S, Yin H, Zhang M, Luo C, Gong Q, Xiao X, Chen Q. Retinal biomarkers for the risk of Alzheimer's disease and frontotemporal dementia. Front Aging Neurosci 2025; 16:1513302. [PMID: 39868381 PMCID: PMC11759267 DOI: 10.3389/fnagi.2024.1513302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms. Methods We included a total of 3,0573 UK Biobank participants without dementia, ocular disorders, and diabetes who underwent baseline retinal optical coherence tomography (OCT) imaging. Cox proportional hazards models were used to estimate the associations between macular OCT parameters and the risk of AD and FTD. Mediation analysis was used to explore the underlying mechanisms affected by brain structures. Results The mean age at recruitment was 55.27, and 46.10% of the participants were male. During a mean follow-up of 9.15 ± 2.59 years, 148 patients with AD and eight patients with FTD were identified. Reduced thickness of the ganglion cell-inner plexiform layer (GC-IPL) at baseline was associated with an increased risk of AD (HR, 1.033; 95% CI, 1.001-1.066; P = 0.044), while thinner retinal pigment epithelial in the inner superior subfield at baseline was associated with an elevated risk of FTD (HR, 1.409; 95% CI, 1.060-1.871; P = 0.018). Structurally abnormal visual pathways, including cortical and subcortical gray matter volumes, as well as white matter integrity, mediated the association between the GC-IPL thickness and AD risk. Conclusion Our findings provide preliminary empirical support for a relationship between prodromal changes in retinal layers and a higher risk of AD or FTD, suggesting that macular OCT may serve as a non-invasive, sensitive biomarker of high-risk years before the onset of dementia.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiajie Cai
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Linyuan Qin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hanlin Cai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yimeng Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Caimei Luo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Feng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
6
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
García-Sánchez A, Sotolongo-Grau O, Tartari JP, Sanabria Á, Esteban-De Antonio E, Pérez-Cordón A, Alegret M, Pytel V, Martínez J, Aguilera N, de Rojas I, Cano A, García-González P, Puerta R, Olivé C, Capdevila M, García-Gutiérrez F, Vivas A, Gómez-Chiari M, Giménez J, Tejero MÁ, Castilla-Martí M, Castilla-Martí L, Tárraga L, Valero S, Ruiz A, Boada M, Marquié M. Macular vessel density in the superficial plexus is not a proxy of cerebrovascular damage in non-demented individuals: data from the NORFACE cohort. Alzheimers Res Ther 2024; 16:42. [PMID: 38378643 PMCID: PMC10877901 DOI: 10.1186/s13195-024-01408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Optical coherence tomography angiography (OCT-A) is a novel tool that allows the detection of retinal vascular changes. We investigated the association of macular vessel density (VD) in the superficial plexus assessed by OCT-A with measures of cerebrovascular pathology and atrophy quantified by brain magnetic resonance imaging (MRI) in non-demented individuals. METHODS Clinical, demographical, OCT-A, and brain MRI data from non-demented research participants were included. We analyzed the association of regional macular VD with brain vascular burden using the Fazekas scale assessed in a logistic regression analysis, and the volume of white matter hyperintensities (WMH) assessed in a multiple linear regression analysis. We also explored the associations of macular VD with hippocampal volume, ventricle volume and Alzheimer disease cortical signature (ADCS) thickness assessed in multiple linear regression analyses. All analyses were adjusted for age, sex, syndromic diagnosis and cardiovascular variables. RESULTS The study cohort comprised 188 participants: 89 with subjective cognitive decline and 99 with mild cognitive impairment. No significant association of regional macular VD with the Fazekas categories (all, p > 0.111) and WMH volume (all, p > 0.051) were detected. VD in the nasal quadrant was associated to hippocampal volume (p = 0.007), but no other associations of macular VD with brain atrophy measures were detected (all, p > 0.05). DISCUSSION Retinal vascular measures were not a proxy of cerebrovascular damage in non-demented individuals, while VD in the nasal quadrant was associated with hippocampal atrophy independently of the amyloid status.
Collapse
Affiliation(s)
- Ainhoa García-Sánchez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Joan Martínez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Maria Capdevila
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | | | - Assumpta Vivas
- Department of Diagnostic Imaging, Clínica Corachan, Barcelona, Spain
| | | | - Juan Giménez
- Department of Diagnostic Imaging, Clínica Corachan, Barcelona, Spain
| | | | - Miguel Castilla-Martí
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain
- Vista Alpina Eye Clinic, Visp, Switzerland
| | - Luis Castilla-Martí
- PhD Programme in Surgery and Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hôpital Ophtalmique Jules-Gonin, Fondation Asiles Des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Chang YK, Etnier JL, Li RH, Ren FF, Ai JY, Chu CH. Acute Exercise Effect on Neurocognitive Function Among Cognitively Normal Late-Middle-Aged Adults With/Without Genetic Risk of AD: The Moderating Role of Exercise Volume and APOE Genotype. J Gerontol A Biol Sci Med Sci 2024; 79:glad179. [PMID: 37526237 DOI: 10.1093/gerona/glad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Acute exercise is a behavior that benefits cognitive function; however, its effect on populations with different risks for Alzheimer's disease (AD) and the role of exercise variance and Apolipoprotein E (APOE) genotype on this effect remains unknown. This study explores the acute exercise effect on behavioral and neurocognitive function, and its potential moderation by exercise intensity and duration and APOE genetic risk. METHODS Fifty-one cognitively normal adults (~36% APOE ε4 carriers) performed the Stroop task under a rest condition and 3 exercise conditions while electroencephalographic activity was assessed. RESULTS Acute exercise improved cognitive performance assessed through both behavioral and neuroelectrical indices. These benefits were observed regardless of adjustments of intensity and duration at a predetermined exercise volume as well as being evident irrespective of APOE ɛ4 carrier status. CONCLUSIONS Acute exercise could be proposed as a lifestyle intervention to benefit neurocognitive function in populations with and without genetic risk of AD. Future exploration should further the precise exercise prescription and also the mechanisms underlying the beneficial effects of acute exercise for neurocognitive function. CLINICAL TRIALS REGISTRATION NUMBER NCT05591313.
Collapse
Affiliation(s)
- Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
- Social Emotional Education and Development Center, National Taiwan Normal University, Taipei, Taiwan
| | - Jennifer L Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Ruei-Hong Li
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Fei-Fei Ren
- Department of Physical Education, Beijing Language and Culture University, Beijing, China
| | - Jing-Yi Ai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Chien-Heng Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
9
|
Li R, Zheng F, Xu P, Lv L, Mu Y, Zhuang X, Chen S. Correlation of mild cognitive impairment with the thickness of retinal nerve fiber layer and serum indicators in type 2 diabetic patients. Front Endocrinol (Lausanne) 2024; 14:1299206. [PMID: 38260156 PMCID: PMC10801021 DOI: 10.3389/fendo.2023.1299206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cognitive Impairment arising from type 2 diabetes mellitus (T2DM) has garnered significant attention in recent times. However, there are few studies on the identification and diagnosis of markers of cognitive impairment. Notably, alterations in the Retinal Nerve Fiber Layer's (RNFL) thickness can potentially serve as an indicative measure of central nervous system changes. Further investigations have indicated that the decline in cognitive function within T2DM patients is intricately linked to persistent systemic inflammation and the accumulation of advanced glycosylation end products. Comprehensive studies are warranted to unveil these complex associations. Objective This study aims to explore the potential of utilizing the RNFL thickness and serological concentrations of IL-18, irisin, CML, and RAGE as diagnostic indicators for Mild Cognitive Impairment (MCI) among individuals with T2DM. Methods The thickness of RNFL were determined in all patients and controls using optical coherence tomography (OCT). The serum levels of IL-18, irisin, CML and RAGE were detected by ELISA kit. In addition, Cognitive assessment was performed by the Mini-Mental State Examination (MMSE) and the Montreal Cognitive assessment (MoCA). Results The average RNFL thickness in the right eye were decreased in T2DM and T2DM combined with MCI (T2DM-MCI) patients and were positively correlated with MoCA and MMSE scores. The serum levels of IL-18, CML and RAGE in T2DM and T2DM-MCI increased significantly (p<0.05) and were negative correlated with MoCA and MMSE scores. The level of irisin in T2DM and T2DM-MCI decreased significantly (p<0.05) and were positively correlated with MoCA and MMSE scores. The area under the ROC curve of T2DM-MCI predicted by the average RNFL thickness in the right eye, CML and RAGE were 0.853, 0.874 and 0.815. The diagnostic efficacy of the combination of average RNFL thickness in the right eye, CML, and RAGE for the diagnosis of T2DM-MCI was 0.969. Conclusion The average RNFL thickness in the right eye, CML and RAGE have possible diagnostic value in T2DM-MCI patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, The Second Hospital of Shandong University, Ji’nan, Shandong, China
| | - Shihong Chen
- Department of Endocrinology and Metabolism, Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, The Second Hospital of Shandong University, Ji’nan, Shandong, China
| |
Collapse
|
10
|
Mousa D, Zayed N, Yassine IA. Correlation transfer function analysis as a biomarker for Alzheimer brain plasticity using longitudinal resting-state fMRI data. Sci Rep 2023; 13:21559. [PMID: 38057476 PMCID: PMC10700324 DOI: 10.1038/s41598-023-48693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Neural plasticity is the ability of the brain to alter itself functionally and structurally as a result of its experience. However, longitudinal changes in functional connectivity of the brain are still unrevealed in Alzheimer's disease (AD). This study aims to discover the significant connections (SCs) between brain regions for AD stages longitudinally using correlation transfer function (CorrTF) as a new biomarker for the disease progression. The dataset consists of: 29 normal controls (NC), and 23, 24, and 23 for early, late mild cognitive impairments (EMCI, LMCI), and ADs, respectively, along three distant visits. The brain was divided into 116 regions using the automated anatomical labeling atlas, where the intensity time series is calculated, and the CorrTF connections are extracted for each region. Finally, the standard t-test and ANOVA test were employed to investigate the SCs for each subject's visit. No SCs, along three visits, were found For NC subjects. The most SCs were mainly directed from cerebellum in case of EMCI and LMCI. Furthermore, the hippocampus connectivity increased in LMCI compared to EMCI whereas missed in AD. Additionally, the patterns of longitudinal changes among the different AD stages compared to Pearson Correlation were similar, for SMC, VC, DMN, and Cereb networks, while differed for EAN and SN networks. Our findings define how brain changes over time, which could help detect functional changes linked to each AD stage and better understand the disease behavior.
Collapse
Affiliation(s)
- Doaa Mousa
- Computers and Systems Department, Electronics Research Institute, Cairo, Egypt.
| | - Nourhan Zayed
- Computers and Systems Department, Electronics Research Institute, Cairo, Egypt
- Mechanical Engineering Department, The British University in Egypt, Cairo, Egypt
| | - Inas A Yassine
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, Lv CS, Li SY, Liu SF, Wen L. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer's disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 2023; 44:2151-2168. [PMID: 37420104 PMCID: PMC10618533 DOI: 10.1038/s41401-023-01125-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 μM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aβ generation by inhibiting the β-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aβ plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aβ generation in early AD, which is a potential therapeutic intervention for early AD treatment.
Collapse
Affiliation(s)
- Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pan-Pan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shi-Ying Li
- Eye Institute of Xiamen University, Department of Ophthalmology, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
12
|
Chen S, Zhang D, Zheng H, Cao T, Xia K, Su M, Meng Q. The association between retina thinning and hippocampal atrophy in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review. Front Aging Neurosci 2023; 15:1232941. [PMID: 37680540 PMCID: PMC10481874 DOI: 10.3389/fnagi.2023.1232941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction The retina is the "window" of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer's disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection. Methods We systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher's Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method. Results Of the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490-0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(-0.0447-0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference. Conclusion The correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022328088.
Collapse
Affiliation(s)
- Shuntai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dian Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Xia
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwan Su
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Bukacova K, Mana J, Zakharov S, Diblík P, Pelclova D, Urban P, Klepiš P, Klempíř J, Libon DJ, Růžička E, Bezdicek O. Höffding step and beyond: The impact of visual sensory impairment on cognitive performance in neuropsychological testing of survivors of acute methanol poisoning. NeuroRehabilitation 2023:NRE220289. [PMID: 37248919 DOI: 10.3233/nre-220289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Sensory deficits can result in limitations regarding how well neuropsychological test findings can be interpreted. Only a few studies have investigated the influence of vision alteration on neuropsychological tests. In 2012 the Czech Republic experienced mass methanol poisoning. Methanol metabolites cause histotoxic hypoxia to the optic nerve. OBJECTIVE In the current study, the effect of the toxic damage on the parts of the visual pathway on visual and non-visual neuropsychological measures was investigated using electrophysiological methods (visual evoked potential (VEP) and optical coherence tomography (OCT) with retinal nerve fibre layer (RNFL) thickness measurement. METHODS 53 individuals who experienced methanol poisoning participated in this research (76% men; ages 24 to 74 years, mean = 43.8±14.6 years; education 11.9±1.4 years). Each participant underwent comprehensive neurological, ophthalmological, and neuropsychological examinations. RESULTS The results of mixed-effect models revealed significant small to a medium association between the Stroop test weak interference and Grooved Pegboard with the left eye global, nasal and temporal RNFL thickness. Also, medium associations between the Finger Tapping test and the Stroop test weak interference and OS temporal RNFL, right eye temporal RNFL, and the latency P1 of VEP in the left eye were significant. CONCLUSION The results of this study found a small to medium association (r = .15- .33; p = .010- .046) between RNFL thickness and cognitive visual test performance. Careful interpretation is suggested regarding results obtained from visual tests of the executive or motor functioning with participants with RNFL decrease or other types of early visual processing damage.
Collapse
Affiliation(s)
- Katerina Bukacova
- Centre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Josef Mana
- Centre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Sergey Zakharov
- Department of Occupational Medicine, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Pavel Diblík
- Department of Ophthalmology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Pavel Urban
- National Institute of Public Health, Prague, Czech Republic
| | - Petr Klepiš
- Department of Occupational Medicine, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Jiří Klempíř
- Centre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - David J Libon
- Department of Geriatrics and Gerontology, Institute for Successful Aging, Department of Psychology, School of Osteopathic Medicine, Rowan University, Glassboro, NJ, USA
| | - Evžen Růžička
- Centre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Ondrej Bezdicek
- Centre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
- Department of Psychology, Faculty of Arts, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Hu Z, Wang L, Zhu D, Qin R, Sheng X, Ke Z, Shao P, Zhao H, Xu Y, Bai F. Retinal Alterations as Potential Biomarkers of Structural Brain Changes in Alzheimer’s Disease Spectrum Patients. Brain Sci 2023; 13:brainsci13030460. [PMID: 36979270 PMCID: PMC10046312 DOI: 10.3390/brainsci13030460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Retinal imaging being a potential biomarker for Alzheimer’s disease is gradually attracting the attention of researchers. However, the association between retinal parameters and AD neuroimaging biomarkers, particularly structural changes, is still unclear. In this cross-sectional study, we recruited 25 cognitively impaired (CI) and 21 cognitively normal (CN) individuals. All subjects underwent retinal layer thickness and microvascular measurements with optical coherence tomography angiography (OCTA). Gray matter and white matter (WM) data such as T1-weighted magnetic resonance imaging and diffusion tensor imaging, respectively, were also collected. In addition, hippocampal subfield volumes and WM tract microstructural alterations were investigated as classical AD neuroimaging biomarkers. The microvascular and retinal features and their correlation with brain structural imaging markers were further analyzed. We observed a reduction in vessel density (VD) at the inferior outer (IO) sector (p = 0.049), atrophy in hippocampal subfield volumes, such as the subiculum (p = 0.012), presubiculum (p = 0.015), molecular_layer_HP (p = 0.033), GC-ML-DG (p = 0.043) and whole hippocampus (p = 0.033) in CI patients. Altered microstructural integrity of WM tracts in CI patients was also discovered in the cingulum hippocampal part (CgH). Importantly, we detected significant associations between retinal VD and gray matter volumes of the hippocampal subfield in CI patients. These findings suggested that the retinal microvascular measures acquired by OCTA may be markers for the early prediction of AD-related structural brain changes.
Collapse
Affiliation(s)
- Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Lianlian Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Dandan Zhu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: ; Tel.: +86-25-83105960
| |
Collapse
|
15
|
Retinal Neurodegeneration Measured With Optical Coherence Tomography and Neuroimaging in Alzheimer Disease: A Systematic Review. J Neuroophthalmol 2023; 43:116-125. [PMID: 36255105 DOI: 10.1097/wno.0000000000001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) has enabled several retinal alterations to be detected in patients with Alzheimer disease (AD), alterations that could be potential biomarkers. However, the relationship between the retina and other biomarkers of AD has been underresearched. We gathered and analyzed the literature about the relationship between retinal and cerebral alterations detected via neuroimaging in patients with AD, mild cognitive impairment (MCI), and preclinical AD. METHODS This systematic review followed the PRISMA Statement guidelines through the 27 items on its checklist. We searched in PubMed, BVS, Scopus, and the Cochrane Library, using the keywords: Alzheimer's disease, optical coherence tomography, white matter, cortex, atrophy, cortical thickness, neuroimaging, magnetic resonance imaging, and positron emission tomography. We included articles that studied the retina in relation to neuroimaging in patients with AD, MCI, and preclinical AD. We excluded studies without OCT, without neuroimaging, clinical cases, opinion articles, systematic reviews, and animal studies. RESULTS Of a total of 35 articles found, 23 were finally included. Although mixed results were found, most of these corroborate the relationship between retinal and brain disorders. CONCLUSIONS More rigorous research is needed in the field, including homogenized, longitudinal, and prolonged follow-up studies, as well as studies that include all stages of AD. This will enable better understanding of the retina and its implications in AD, leading to the discovery of retinal biomarkers that reflect brain alterations in AD patients in an accessible and noninvasive manner.
Collapse
|
16
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
17
|
Early visual alterations in individuals at-risk of Alzheimer's disease: a multidisciplinary approach. Alzheimers Res Ther 2023; 15:19. [PMID: 36694201 PMCID: PMC9872347 DOI: 10.1186/s13195-023-01166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND The earliest pathological features of Alzheimer's disease (AD) appear decades before the clinical symptoms. The pathology affects the brain and the eye, leading to retinal structural changes and functional visual alterations. Healthy individuals at high risk of developing AD present alterations in these ophthalmological measures, as well as in resting-state electrophysiological activity. However, it is unknown whether the ophthalmological alterations are related to the visual-related electrophysiological activity. Elucidating this relationship is paramount to understand the mechanisms underlying the early deterioration of the system and an important step in assessing the suitability of these measures as early biomarkers of disease. METHODS In total, 144 healthy subjects: 105 with family history of AD and 39 without, underwent ophthalmologic analysis, magnetoencephalography recording, and genotyping. A subdivision was made to compare groups with less demographic and more risk differences: 28 high-risk subjects (relatives/APOEɛ4 +) and 16 low-risk (non-relatives/APOEɛ4 -). Differences in visual acuity, contrast sensitivity, and macular thickness were evaluated. Correlations between each variable and visual-related electrophysiological measures (M100 latency and time-frequency power) were calculated for each group. RESULTS High-risk groups showed increased visual acuity. Visual acuity was also related to a lower M100 latency and a greater power time-frequency cluster in the high-risk group. Low-risk groups did not show this relationship. High-risk groups presented trends towards a greater contrast sensitivity that did not remain significant after correction for multiple comparisons. The highest-risk group showed trends towards the thinning of the inner plexiform and inner nuclear layers that did not remain significant after correction. The correlation between contrast sensitivity and macular thickness, and the electrophysiological measures were not significant after correction. The difference between the high- and low- risk groups correlations was no significant. CONCLUSIONS To our knowledge, this paper is the first of its kind, assessing the relationship between ophthalmological and electrophysiological measures in healthy subjects at distinct levels of risk of AD. The results are novel and unexpected, showing an increase in visual acuity among high-risk subjects, who also exhibit a relationship between this measure and visual-related electrophysiological activity. These results have not been previously explored and could constitute a useful object of research as biomarkers for early detection and the evaluation of potential interventions' effectiveness.
Collapse
|
18
|
Zhao B, Yan Y, Wu X, Geng Z, Wu Y, Xiao G, Wang L, Zhou S, Wei L, Wang K, Liao R. The correlation of retinal neurodegeneration and brain degeneration in patients with Alzheimer's disease using optical coherence tomography angiography and MRI. Front Aging Neurosci 2023; 15:1089188. [PMID: 37122375 PMCID: PMC10130430 DOI: 10.3389/fnagi.2023.1089188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Pathological changes in Alzheimer's disease can cause retina and optic nerve degeneration. The retinal changes are correlated with cognitive function. This study aimed to explore the relationship of retinal differences with neuroimaging in patients with Alzheimer's disease, analyze the association of cognitive function with retinal structure and vascular density, and identify potential additional biomarkers for early diagnosis of Alzheimer's disease. Method We performed magnetic resonance imaging (MRI) scans and neuropsychological assessments in 28 patients with mild Alzheimer's disease and 28 healthy controls. Retinal structure and vascular density were evaluated by optical coherence tomography angiography (OCTA). Furthermore, we analyzed the correlation between neuroimaging and OCTA parameters in patients with mild Alzheimer's disease with adjustment for age, gender, years of education, and hypertension. Results In patients with mild Alzheimer's disease, OCTA-detected retinal parameters were not significantly correlated with MRI-detected neuroimaging parameters after Bonferroni correction for multiple testing. Under multivariable analysis controlled for age, gender, years of education, and hypertension, the S-Hemi (0-3) sector of macular thickness was significantly associated with Mini-cog (β = 0.583, P = 0.002) with Bonferroni-corrected threshold at P < 0.003. Conclusion Our findings suggested decreased macular thickness might be associated with cognitive function in mild AD patients. However, the differences in retinal parameters didn't correspond to MRI-detected parameters in this study. Whether OCTA can be used as a new detection method mirroring MRI for evaluating the effect of neuronal degeneration in patients with mild Alzheimer's disease still needs to be investigated by more rigorous and larger studies in the future.
Collapse
Affiliation(s)
- Bingying Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Guixian Xiao
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- *Correspondence: Kai Wang,
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Rongfeng Liao,
| |
Collapse
|
19
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
20
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
21
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
22
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|