1
|
Debourdeau E, Chamard C, Ayrignac X, Varnier Q, Crowdy H, Villain M, Arquizan C, Daien V, Ter Schiphorst A. EVALUATION OF RETINAL CAPILLARY DENSITY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY ACCORDING TO ACUTE ISCHEMIC STROKE ETIOLOGIES: A Matched Case-Control Study Stroke and Retinal Capillary Density. Retina 2025; 45:915-927. [PMID: 39761574 DOI: 10.1097/iae.0000000000004378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PURPOSE To investigate retinal microvascular changes in ischemic stroke patients using optical coherence tomography angiography (OCT-A) and assess these alterations based on stroke etiology. METHODS Case-control study conducted at Montpellier University Hospital from May 2021 to March 2022 (Institutional Review Board: 202000607). Retinal vascular features were compared between strokes patients and age-matched and sex-matched controls. Optical coherence tomography angiography was performed using RTVue-XR-Avanti with AngioVue (Optovue). Multivariate mixed-effects analysis of covariance models adjusted for age, sex, intraocular pressure, and cardiovascular risk factors were used. RESULTS Ninety-two eyes were included: 21 with micro-/macroangiopathy stroke, 12 with etiologically ambiguous stroke, 13 with cardioembolic stroke, and 46 eyes from control subjects. After adjusting for age, sex, and intraocular pressure, stroke patients had significantly lower parafoveal superficial capillary plexus vessel density ( P = 0.013) and superficial capillary plexus flow index ( P = 0.023) compared with control subjects, especially in the macro-/microangiopathy subgroup. When cardiovascular risk factors were included, only the superficial capillary plexus flow index difference remained significant ( P = 0.023). Optical coherence tomography angiography's diagnostic accuracy was validated with an area under the receiver operating characteristic curve of 0.83. CONCLUSION Optical coherence tomography angiography effectively detects retinal microvascular alterations in stroke patients, with persistent alterations in macro-/microangiopathy strokes after adjusting for cardiovascular risk factors. These findings support OCT-A's role in stroke subtype classification.
Collapse
Affiliation(s)
- Eloi Debourdeau
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Institute for Neurosciences of Montpellier INM, University of Montpellier, INSERM, Montpellier, France
| | - Chloe Chamard
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Institute for Neurosciences of Montpellier INM, University of Montpellier, INSERM, Montpellier, France
| | - Xavier Ayrignac
- Neurology Department, CHRU Gui de Chauliac, Montpellier, France
| | - Quentin Varnier
- Neuroradiology Department, CHRU Gui de Chauliac, Montpellier, France ; and
| | - Hannah Crowdy
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| | - Max Villain
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| | | | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Institute for Neurosciences of Montpellier INM, University of Montpellier, INSERM, Montpellier, France
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
2
|
Chen Z, Liao S, Chen G, Li C, Liu C, Liu J, Wu G, Lyu Z, Liu M, Wu X, Ma G, Meng Q. The Combination of Retinal Neurovascular Unit Changes With Carotid Artery Stenosis Enhances the Prediction of Ischemic Stroke. Transl Vis Sci Technol 2025; 14:14. [PMID: 40080013 PMCID: PMC11918090 DOI: 10.1167/tvst.14.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Purpose We aimed to analyze retinal neurovascular unit (RNVU) alterations and function via optical coherence tomography angiography (OCTA) and full-field electroretinography (ERG) in patients with ischemic stroke (IS). Methods OCTA was used to measure RNVU changes in 229 participants (101 with IS and 128 healthy controls). The RETeval device was used to record full-field electroretinograms (FERGs) in 40 participants (14 with IS and 26 healthy controls). Logistic regression models for IS were constructed. Receiver operating characteristic (ROS) curves were constructed to assess the predictive value of various models for IS. Results Patients with ipsilateral internal carotid artery stenosis (ICAS) had a greater occurrence of IS. A decrease in the vascular density (VD) of the parafovea, FD-300, and nasal optic disc; a decrease in the thickness of the retinal nerve fiber layer (RNFL) around the nasal optic disc; and an increase in the acircularity index (AI) were observed in patients with IS (P < 0.05). An increase in the AI was identified as a risk factor for IS, whereas the other factors were found to be protective factors. The IS group presented a delayed a-wave implicit time and decreased b-wave amplitudes at the scotopic point. By incorporating traditional risk factors, the degree of ipsilateral ICAS, and OCTA parameters, a high predictive value for IS was achieved (area under the curve [AUC] = 0.933). Conclusions Patients with IS without visible fundus lesions presented changes in the RNVU, characterized by reductions in retinal VD and RNFL thickness, alongside dysfunction of photoreceptor cells and bipolar cells. The combination of RNVU changes with traditional risk factors can enhance the prediction of IS, which provides valuable guidance for monitoring this disease. Translational Relevance This study demonstrated that the combination of OCTA parameters, the degree of ipsilateral ICAS, and traditional risk factors could can enhance the prediction of IS. These findings provide valuable guidance for monitoring IS by assessing RNVUs.
Collapse
Affiliation(s)
- Zhifan Chen
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuoxin Liao
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Changmao Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chunling Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junbin Liu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangyu Wu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Lyu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mengya Liu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiyu Wu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qianli Meng
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Phua TJ. Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan. FRONTIERS IN AGING 2025; 5:1526230. [PMID: 39839443 PMCID: PMC11747043 DOI: 10.3389/fragi.2024.1526230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory. Understanding this complex web is a major challenge in Geroscience, yet it is crucial for developing effective strategies that promote healthy aging, reduce medical costs, and ensure the sustainability of health systems. Gaining insights in this area is essential for creating interventions that can slow the aging process, enhance healthspan, and decrease the likelihood of age-related diseases. The integration of knowledge from various fields concerning the middle-aging nitric oxide (NO)-mediated hypovascularity hypoxia hemodynamic hypothesis points to a systems-based approach to the biological hallmarks of aging. Key evidence suggests a systemic connection between the endocrine system (specifically sex hormones), endogenous NO deficiency, and the vascular system, which serves as a network of microvascular structures crucial for tissue perfusion functions at cellular level. These processes also involve oxidative stress and inflammation triggered by hypoxia.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
4
|
Colcombe J, Solli E, Kaiser A, Ranadive I, Bolneni S, Berger J, Garshick M, Modi Y. The Use of Retinal Imaging Including Fundoscopy, OCT, and OCTA for Cardiovascular Risk Stratification and the Detection of Subclinical Atherosclerosis. Curr Atheroscler Rep 2025; 27:23. [PMID: 39775159 DOI: 10.1007/s11883-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of preventable morbidity and mortality globally, and retinal imaging modalities (old and new) are being explored as noninvasive tools to predict latent atherosclerosis and cardiovascular disease. This review focuses on the emerging promise of fundoscopy, optical coherence tomography (OCT), and optical coherence tomography angiography (OCTA) in CVD prognostication. RECENT FINDINGS High-quality studies have established the utility of vessel-based parameters and discrete conditions diagnosable via fundoscopy in subclinical atherosclerosis detection or CVD prediction. Recent research shows OCT measurements of different retinal layers and specific imaging findings (such as retinal ischemic perivascular lesions) are widely accessible and objective biomarkers for incipient CVD and ensuing risk. Myriad OCTA metrics appear to reliably inform on current CVD burden and cardiovascular risk. Fundoscopy, OCT, and OCTA all have a growing body of literature supporting their utility as adjuncts in CVD prediction and risk stratification.
Collapse
Affiliation(s)
- Joseph Colcombe
- Department of Ophthalmology, NYU Langone Medical Center, New York, USA.
| | - Elena Solli
- Department of Ophthalmology, NYU Langone Medical Center, New York, USA
| | - Alexis Kaiser
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Isha Ranadive
- Department of Cardiology, Mount Sinai Medical Center, New York, USA
| | - Swathi Bolneni
- Department of Cardiology, NYU Langone Medical Center, New York, USA
| | - Jeffrey Berger
- Department of Cardiology, NYU Langone Medical Center, New York, USA
| | - Michael Garshick
- Department of Cardiology, NYU Langone Medical Center, New York, USA
| | - Yasha Modi
- Department of Ophthalmology, NYU Langone Medical Center, New York, USA
| |
Collapse
|
5
|
Yao J, Yao W, Zhu J, Liu Y, Liu J, Ji Y, Ni X, Mu W, Yan B. Targeting tRNA-Derived Non-Coding RNA Alleviates Diabetes-Induced Visual Impairment through Protecting Retinal Neurovascular Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411042. [PMID: 39513253 PMCID: PMC11714213 DOI: 10.1002/advs.202411042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/15/2024]
Abstract
Diabetes is a major risk factor for compromised visual health, leading to retinal vasculopathy and neuropathy, both of which are hallmarks of neurovascular unit dysfunction. Despite the critical impact of diabetic retinopathy, the precise mechanism underlying neurovascular coupling and effective strategies to suppress neurovascular dysfunction remain unclear. In this study, the up-regulation of a tRNA-derived stress-induced RNA, 5'tiRNA-His-GTG, in response to diabetic stress is revealed. 5'tiRNA-His-GTG directly regulates Müller glia action and indirectly alters endothelial angiogenic effects and retinal ganglion cell (RGC) survival in vitro. Downregulation of 5'tiRNA-His-GTG alleviates diabetes-induced retinal neurovascular dysfunction, characterized by reduced retinal vascular dysfunction, decreased retinal neurodegeneration, and improved visually-guided behaviors in vivo. Mechanistically, 5'tiRNA-His-GTG acts as a key regulator of retinal neurovascular dysfunction, primarily by modulating arachidonic acid (AA) metabolism via the CYPs pathway. The 5'tiRNA-His-GTG-CYP2E1-19(S)-HETE signaling axis is identified as a key driver of retinal neurovascular dysfunction. Thus, targeting 5'tiRNA-His-GTG presents a promising therapeutic strategy for treating vasculopathy and neuropathy associated with diabetes mellitus. Modulating this novel signaling pathway can open up new avenues for intervention in diabetic retinopathy and its related complications.
Collapse
Affiliation(s)
- Jin Yao
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Wen Yao
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Jun‐Ya Zhu
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Yan Liu
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Jin‐Hong Liu
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Yu‐Ke Ji
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Xi‐Shen Ni
- The Affiliated Eye HospitalNanjing Medical UniversityNanjing210000China
| | - Wan Mu
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
- Eye Institute and Department of OphthalmologyEye and ENT HospitalFudan UniversityShanghai200031China
| | - Biao Yan
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| |
Collapse
|
6
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Courtie E, Kirkpatrick JRM, Taylor M, Faes L, Liu X, Logan A, Veenith T, Denniston AK, Blanch RJ. Optical coherence tomography angiography analysis methods: a systematic review and meta-analysis. Sci Rep 2024; 14:9643. [PMID: 38670997 PMCID: PMC11053039 DOI: 10.1038/s41598-024-54306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/11/2024] [Indexed: 04/28/2024] Open
Abstract
Optical coherence tomography angiography (OCTA) is widely used for non-invasive retinal vascular imaging, but the OCTA methods used to assess retinal perfusion vary. We evaluated the different methods used to assess retinal perfusion between OCTA studies. MEDLINE and Embase were searched from 2014 to August 2021. We included prospective studies including ≥ 50 participants using OCTA to assess retinal perfusion in either global retinal or systemic disorders. Risk of bias was assessed using the National Institute of Health quality assessment tool for observational cohort and cross-sectional studies. Heterogeneity of data was assessed by Q statistics, Chi-square test, and I2 index. Of the 5974 studies identified, 191 studies were included in this evaluation. The selected studies employed seven OCTA devices, six macula volume dimensions, four macula subregions, nine perfusion analyses, and five vessel layer definitions, totalling 197 distinct methods of assessing macula perfusion and over 7000 possible combinations. Meta-analysis was performed on 88 studies reporting vessel density and foveal avascular zone area, showing lower retinal perfusion in patients with diabetes mellitus than in healthy controls, but with high heterogeneity. Heterogeneity was lowest and reported vascular effects strongest in superficial capillary plexus assessments. Systematic review of OCTA studies revealed massive heterogeneity in the methods employed to assess retinal perfusion, supporting calls for standardisation of methodology.
Collapse
Affiliation(s)
- Ella Courtie
- Neuroscience and Ophthalmology Research Group, University of Birmingham, Birmingham, UK
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, UK
- Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Matthew Taylor
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Livia Faes
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| | - Xiaoxuan Liu
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHSFT, Birmingham, UK
| | - Ann Logan
- Axolotl Consulting Ltd., Droitwich, Worcestershire, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Tonny Veenith
- Neuroscience and Ophthalmology Research Group, University of Birmingham, Birmingham, UK
- Critical Care Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Trauma Sciences, University of Birmingham, Birmingham, UK
| | - Alastair K Denniston
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHSFT, Birmingham, UK
| | - Richard J Blanch
- Neuroscience and Ophthalmology Research Group, University of Birmingham, Birmingham, UK.
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, UK.
- Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
| |
Collapse
|
8
|
Wang L, Shah S, Llaneras CN, Goldhardt R. Insight into the Brain: Application of the Retinal Microvasculature as a Biomarker for Cerebrovascular Diseases through Optical Coherence Tomography Angiography. CURRENT OPHTHALMOLOGY REPORTS 2024; 12:1-11. [PMID: 39310044 PMCID: PMC11415260 DOI: 10.1007/s40135-023-00320-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 09/25/2024]
Abstract
Purpose of review The present article serves as a comprehensive review of the published research literature surrounding the retinal microvasculature, characterized through the optical coherence tomography angiography (OCTA) and its potential clinical value for understanding and detecting cerebrovascular diseases. Recent findings Studies from the past 3 years (2020-2023) have identified a degeneration of the retinal microvasculature, commonly defined through the loss of vascular density, in ischemic stroke, dementia, carotid artery stenosis, cerebral small vessel disease, and a series of rare, potentially inherited cerebrovascular disorders. These retinal microvascular changes often correlate with structure and functional changes in the brain and sometimes occur prior to debilitating neurodegeneration. Summary While further investigations with longitudinal data and larger sample sizes are necessary, OCTA shows promising results for characterizing the retinal microvasculature as a potential imaging biomarker in reflecting the changes in the cerebral microvasculature for early detection, prevention, and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Liang Wang
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Serena Shah
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Raquel Goldhardt
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
9
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024; 16:AD.2024.0112. [PMID: 38300645 PMCID: PMC11745452 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People’s Hospital), Hangzhou, Zhejiang, China.
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People’s Hospital), Hangzhou, Zhejiang, China.
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Adejumo T, Ma G, Son T, Kim TH, Le D, Dadzie AK, Ahmed S, Yao X. Adaptive vessel tracing and segmentation in OCT enables the robust detection of wall-to-lumen ratio abnormalities in 5xFAD mice. BIOMEDICAL OPTICS EXPRESS 2023; 14:6350-6360. [PMID: 38420326 PMCID: PMC10898580 DOI: 10.1364/boe.504317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 03/02/2024]
Abstract
The wall-to-lumen ratio (WLR) of retinal blood vessels promises a sensitive marker for the physiological assessment of eye conditions. However, in vivo measurement of vessel wall thickness and lumen diameter is still technically challenging, hindering the wide application of WLR in research and clinical settings. In this study, we demonstrate the feasibility of using optical coherence tomography (OCT) as one practical method for in vivo quantification of WLR in the retina. Based on three-dimensional vessel tracing, lateral en face and axial B-scan profiles of individual vessels were constructed. By employing adaptive depth segmentation that adjusts to the individual positions of each blood vessel for en face OCT projection, the vessel wall thickness and lumen diameter could be reliably quantified. A comparative study of control and 5xFAD mice confirmed WLR as a sensitive marker of the eye condition.
Collapse
Affiliation(s)
- Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - David Le
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Albert K Dadzie
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Shaiban Ahmed
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Colcombe J, Mundae R, Kaiser A, Bijon J, Modi Y. Retinal Findings and Cardiovascular Risk: Prognostic Conditions, Novel Biomarkers, and Emerging Image Analysis Techniques. J Pers Med 2023; 13:1564. [PMID: 38003879 PMCID: PMC10672409 DOI: 10.3390/jpm13111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Many retinal diseases and imaging findings have pathophysiologic underpinnings in the function of the cardiovascular system. Myriad retinal conditions, new imaging biomarkers, and novel image analysis techniques have been investigated for their association with future cardiovascular risk or utility in cardiovascular risk prognostication. An intensive literature search was performed to identify relevant articles indexed in PubMed, Scopus, and Google Scholar for a targeted narrative review. This review investigates the literature on specific retinal disease states, such as retinal arterial and venous occlusions and cotton wool spots, that portend significantly increased risk of future cardiovascular events, such as stroke or myocardial infarction, and the implications for personalized patient counseling. Furthermore, conditions diagnosed primarily through retinal bioimaging, such as paracentral acute middle maculopathy and the newly discovered entity known as a retinal ischemic perivascular lesion, may be associated with future incident cardiovascular morbidity and are also discussed. As ever-more-sophisticated imaging biomarkers and analysis techniques are developed, the review concludes with a focused analysis of optical coherence tomography and optical coherence tomography angiography biomarkers under investigation for potential value in prognostication and personalized therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Joseph Colcombe
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY 10016, USA; (J.C.); (R.M.)
| | - Rusdeep Mundae
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY 10016, USA; (J.C.); (R.M.)
| | - Alexis Kaiser
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA;
| | - Yasha Modi
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY 10016, USA; (J.C.); (R.M.)
| |
Collapse
|
12
|
Li H, Gao M, Song H, Wu X, Li G, Cui Y, Li Y, Xie Z, Ren Q, Zhang H. Predicting ischemic stroke risk from atrial fibrillation based on multi-spectral fundus images using deep learning. Front Cardiovasc Med 2023; 10:1185890. [PMID: 37600060 PMCID: PMC10434281 DOI: 10.3389/fcvm.2023.1185890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
Background Ischemic stroke (IS) is one of the most common serious secondary diseases of atrial fibrillation (AF) within 1 year after its occurrence, both of which have manifestations of ischemia and hypoxia of the small vessels in the early phase of the condition. The fundus is a collection of capillaries, while the retina responds differently to light of different wavelengths. Predicting the risk of IS occurring secondary to AF, based on subtle differences in fundus images of different wavelengths, is yet to be explored. This study was conducted to predict the risk of IS occurring secondary to AF based on multi-spectrum fundus images using deep learning. Methods A total of 150 AF participants without suffering from IS within 1 year after discharge and 100 IS participants with persistent arrhythmia symptoms or a history of AF diagnosis in the last year (defined as patients who would develop IS within 1 year after AF, based on fundus pathological manifestations generally prior to symptoms of the brain) were recruited. Fundus images at 548, 605, and 810 nm wavelengths were collected. Three classical deep neural network (DNN) models (Inception V3, ResNet50, SE50) were trained. Sociodemographic and selected routine clinical data were obtained. Results The accuracy of all DNNs with the single-spectral or multi-spectral combination images at the three wavelengths as input reached above 78%. The IS detection performance of DNNs with 605 nm spectral images as input was relatively more stable than with the other wavelengths. The multi-spectral combination models acquired a higher area under the curve (AUC) scores than the single-spectral models. Conclusions The probability of IS secondary to AF could be predicted based on multi-spectrum fundus images using deep learning, and combinations of multi-spectrum images improved the performance of DNNs. Acquiring different spectral fundus images is advantageous for the early prevention of cardiovascular and cerebrovascular diseases. The method in this study is a beneficial preliminary and initiative exploration for diseases that are difficult to predict the onset time such as IS.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Mengdi Gao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiao Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Department of Cardiology, Beijing Yanhua Hospital, Beijing, China
| | - Yiwei Cui
- Department of Cardiology, Beijing Yanhua Hospital, Beijing, China
| | - Yang Li
- Department of Cardiology, Beijing Yanhua Hospital, Beijing, China
| | - Zhaoheng Xie
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Haitao Zhang
- Cardio-Metabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Vujosevic S, Fantaguzzi F, Salongcay R, Brambilla M, Torti E, Cushley L, Limoli C, Nucci P, Peto T. Multimodal Retinal Imaging in Patients with Diabetes Mellitus and Association with Cerebrovascular Disease. Ophthalmic Res 2023; 66:1044-1052. [PMID: 37253334 DOI: 10.1159/000531249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION This study aimed to evaluate the association between macular optical coherence tomography angiography (OCT-A) metrics, characteristics of ultrawide field (UWF) imaging, and cerebrovascular disease in patients with diabetes mellitus (DM) with different stages of diabetic retinopathy (DR). METHODS 516 eyes of 258 DM patients were enrolled in two centers (Milan and Belfast). UWF color fundus photos (CFPs) were obtained with Optos California (Optos, PLC) and graded for both DR severity and predominantly peripheral lesions presence (>50% of CFP lesions) by two independent graders. OCT-A (3 × 3 mm), available in 252 eyes of 136 patients, was used to determine perimeter, area, and circularity index of the foveal avascular zone and vessel density (VD); perfusion density (PD); fractal dimension on superficial, intermediate (ICP), and deep capillary plexuses; flow voids (FVs) in the choriocapillaris. RESULTS Out of 516 eyes, 108 eyes (20.9%) had no DR, and 6 eyes were not gradable. The remaining 402 eyes were as follows: 10.3% (53) had mild nonproliferative DR (NPDR), 38.2% (197) had moderate NPDR, 11.8% (61) had severe NPDR, and 17.6% (91) had proliferative DR. A worse DR stage was associated with a history of stroke (p = 0.044). Logistic regression analysis after taking into account sex, type of DM, age, DM duration, and OCT-A variables found that PD and VD on ICP were significantly associated with presence of stroke and DR severity. CONCLUSION OCT-A metrics show an association with the presence of cerebrovascular complications, providing potentially useful parameters to estimate vascular risk in patients with DM.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | | | | | - Marco Brambilla
- Department of Medical Physics, University Hospital Maggiore della Carità, Novara, Italy
| | - Emanuele Torti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Laura Cushley
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Tunde Peto
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
14
|
Alsarhani WK, Al Adel FF, Alamri A, Al Malawi RM, AlBloushi AF. Alterations in ocular microcirculation and oxygen metabolism in patients with lipemia retinalis. BMC Ophthalmol 2022; 22:295. [PMID: 35794613 PMCID: PMC9258117 DOI: 10.1186/s12886-022-02515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The study aims to assess the alterations in retinal oxygen saturation and retinal and choroidal blood flow in lipemia retinalis.
Methods
This was a cross-sectional study on 10 eyes (5 patients) with history of lipemia retinalis. The study comprised 10 eyes with documented history of lipemia retinalis and 10 participants as healthy controls. Patients with a confirmed history of lipemia retinalis were grouped into two cohorts based on their most recent fundus examination: untreated lipemia retinalis (abnormal fundus) and resolved lipemia retinalis (normal fundus). Both retinal arteriolar and venular oxygen saturation were measured using the non-invasive spectrophotometric retinal oximeter (Oxymap T1). The mean blur rate (MBR) of the optic nerve and choroidal blood flow were analyzed using a laser speckle flowgraph (LSFG).
Results
Patients with untreated lipemia retinalis had a significantly higher retinal arteriolar and venular oxygen saturation than that of the other two groups (p < 0.001). Moreover, patients with untreated lipemia retinalis had significantly smaller retinal arteriolar and venular diameters (p < 0.001). On LSFG, there was a significant difference in the overall MBR (p = 0.007) and vessel MBR of the optic nerve between the groups (p = 0.011). The patients with history of lipemia retinalis (untreated and resolved) exhibited a high overall MBR and vessel MBR of the optic nerve than that of the control group. There was a significant elevation of the optic nerve (p = 0.002) and choroidal blowout score (p < 0.001), while the resistivity index of the optic nerve (p = 0.001) and choroids (p = 0.002) was significantly lower in patients with resolved and untreated lipemia retinalis.
Conclusions
There was a significant alteration in retinal oximetry, in untreated lipemia retinalis, and in retinal blood flow, in both the resolved and untreated groups. The increase in retinal blood flow and oxygen saturation may elucidate the preservation of visual acuity and function despite the fundus changes observed in lipemia retinalis.
Collapse
|
15
|
Liang Y, Liu B, Xiao Y, Zeng X, Wu G, Du Z, Fang Y, Hu Y, Yang X, Yu H. Retinal Neurovascular Changes in Patients With Ischemic Stroke Investigated by Optical Coherence Tomography Angiography. Front Aging Neurosci 2022; 14:834560. [PMID: 35860669 PMCID: PMC9289443 DOI: 10.3389/fnagi.2022.834560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo investigate retinal neurovascular structural changes in patients with ischemic stroke (IS) using optical coherence tomography angiography (OCTA).Materials and MethodsThe cross-sectional study was conducted in Guangdong Provincial People’s Hospital, China, consisting of 159 eyes from IS patients and 109 eyes from age-matched control subjects. Retinal microvascular parameters including the vessel density (VD) of the superficial capillary plexus (SCP), deep capillary plexus (DCP) and radial peripapillary capillary (RPC), and neural parameters such as ganglion cell complex thickness (GCCt) and retinal nerve fibre layer thickness (RNFLt) were measured by OCTA.ResultsThe VD of SCP and DCP in the macular area were significantly reduced in IS patients compared to the control group (all p < 0.001). The VD of RPC at the optic disc was also significantly reduced in IS patients (all p < 0.05). IS patients showed reduced GCCt and RNFLt and increased GCC focal loss volume and global loss volume compared with the controls (all p < 0.05). Among patients with IS, the parafovea SCP VD was positively correlated with GCCt (r = 0.346–0.408, all p < 0.001) but not with DCP VD (all p > 0.1). In the optic disc region, the whole image RPC VD was positively correlated with mean RNFLt (r = 0.467–0.548, all p < 0.001).ConclusionReduction of retinal VD, GCCt and RNFLt was observed in patients with IS. The parafovea SCP VD and RPC VD were positively correlated with GCCt and RNFLt, respectively.
Collapse
Affiliation(s)
- Yingying Liang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Baoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Xiao
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Zeng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guanrong Wu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zijing Du
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ying Fang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yijun Hu,
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Xiaohong Yang,
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Honghua Yu,
| |
Collapse
|
16
|
Peng Q, Tseng RMWW, Tham YC, Cheng CY, Rim TH. Detection of Systemic Diseases From Ocular Images Using Artificial Intelligence: A Systematic Review. Asia Pac J Ophthalmol (Phila) 2022; 11:126-139. [PMID: 35533332 DOI: 10.1097/apo.0000000000000515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Despite the huge investment in health care, there is still a lack of precise and easily accessible screening systems. With proven associations to many systemic diseases, the eye could potentially provide a credible perspective as a novel screening tool. This systematic review aims to summarize the current applications of ocular image-based artificial intelligence on the detection of systemic diseases and suggest future trends for systemic disease screening. METHODS A systematic search was conducted on September 1, 2021, using 3 databases-PubMed, Google Scholar, and Web of Science library. Date restrictions were not imposed and search terms covering ocular images, systemic diseases, and artificial intelligence aspects were used. RESULTS Thirty-three papers were included in this systematic review. A spectrum of target diseases was observed, and this included but was not limited to cardio-cerebrovascular diseases, central nervous system diseases, renal dysfunctions, and hepatological diseases. Additionally, one- third of the papers included risk factor predictions for the respective systemic diseases. CONCLUSIONS Ocular image - based artificial intelligence possesses potential diagnostic power to screen various systemic diseases and has also demonstrated the ability to detect Alzheimer and chronic kidney diseases at early stages. Further research is needed to validate these models for real-world implementation.
Collapse
Affiliation(s)
- Qingsheng Peng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Clinical and Translational Sciences Program, Duke-NUS Medical School, Singapore
| | | | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
17
|
Augustin AJ, Atorf J. The Value of Optical Coherence Tomography Angiography (OCT-A) in Neurological Diseases. Diagnostics (Basel) 2022; 12:diagnostics12020468. [PMID: 35204559 PMCID: PMC8871393 DOI: 10.3390/diagnostics12020468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
Optical coherence tomography angiography (OCT-A) was commercially introduced in 2014. OCT-A allows a fast, non-invasive, three-dimensional analysis of the retinal vasculature from the vitreoretinal interface to the choriocapillaris. The results can be evaluated separately in automated or custom-defined retinal layers. Since its introduction, OCT-A has also been used in patients with neurological diseases in order to find and characterize retinal biomarkers. Many neurological diseases have retinal manifestations, often preceding the key symptoms of the neurological disease. Anatomically and developmentally, the retina is a part of the brain. In contrast to the brain, the retina is easily accessible for imaging methods; moreover, retinal imaging is more cost-effective than brain imaging. In this review, the current knowledge about OCT-A findings and possible OCT-A biomarkers in neurological diseases is summarized and discussed regarding the value of OCT-A as a diagnostic tool in neurological diseases.
Collapse
|
18
|
Yang K, Li C, Shi K, Zhu X, Xiao Y, Su B, Ju Y, Lu F, Qu J, Cui L, Li M. Association of Serum Uric Acid With Retinal Capillary Plexus. Front Endocrinol (Lausanne) 2022; 13:855430. [PMID: 35498412 PMCID: PMC9039338 DOI: 10.3389/fendo.2022.855430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To determine the association between serum uric acid (SUA) and the retinal capillary plexus (RCP) using optical coherence tomography angiography (OCTA). METHODS This cross-sectional study evaluated data from August 2019 to January 2020 from participants recruited from the Jidong community (Tangshan, Hebei, China). All participants completed detailed anthropometrical measurements, laboratory tests and comprehensive ophthalmic examinations. We assessed the vessel density in RCP using OCTA. We used multivariable analysis to evaluate the sex-specific association between SUA and RCP after adjusting for confounders. RESULTS A total of 2730 participants were included in this study. The mean age of the participants was 44.0 ± 11.6 years, and 1463 (53.6%) were women. The multivariable βs and 95% confidence intervals (CIs) of superficial RCP vessel density in the second through fourth SUA quartiles compared with the lowest SUA quartiles were -0.27 (-0.56 - 0.03), -0.30 (-0.60 - 0.01), and -0.46 (-0.78 - -0.14) (P for trend = 0.007) in men. CONCLUSIONS Higher SUA levels were significantly associated with lower RCP vessel density in men. Our findings provide evidence for the detrimental effect of high SUA levels on the retinal microvasculature and imply the importance of modulating SUA to prevent the microvascular alternation especially for men.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jia Qu
- *Correspondence: Ming Li, ; Lele Cui, ; Jia Qu,
| | - Lele Cui
- *Correspondence: Ming Li, ; Lele Cui, ; Jia Qu,
| | - Ming Li
- *Correspondence: Ming Li, ; Lele Cui, ; Jia Qu,
| |
Collapse
|