1
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
2
|
Zheng T, Kotol D, Sjöberg R, Mitsios N, Uhlén M, Zhong W, Edfors F, Mulder J. Characterization of reduced astrocyte creatine kinase levels in Alzheimer's disease. Glia 2024; 72:1590-1603. [PMID: 38856187 DOI: 10.1002/glia.24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The creatine-phosphocreatine cycle serves as a crucial temporary energy buffering system in the brain, regulated by brain creatine kinase (CKB), in maintaining Adenosine triphosphate (ATP) levels. Alzheimer's disease (AD) has been linked to increased CKB oxidation and loss of its regulatory function, although specific pathological processes and affected cell types remain unclear. In our study, cerebral cortex samples from individuals with AD, dementia with Lewy bodies (DLB), and age-matched controls were analyzed using antibody-based methods to quantify CKB levels and assess alterations associated with disease processes. Two independently validated antibodies exclusively labeled astrocytes in the human cerebral cortex. Combining immunofluorescence (IF) and mass spectrometry (MS), we explored CKB availability in AD and DLB cases. IF and Western blot analysis demonstrated a loss of CKB immunoreactivity correlated with increased plaque load, severity of tau pathology, and Lewy body pathology. However, transcriptomics data and targeted MS demonstrated unaltered total CKB levels, suggesting posttranslational modifications (PTMs) affecting antibody binding. This aligns with altered efficiency at proteolytic cleavage sites indicated in the targeted MS experiment. These findings highlight that the proper function of astrocytes, understudied in the brain compared with neurons, is highly affected by PTMs. Reduction in ATP levels within astrocytes can disrupt ATP-dependent processes, such as the glutamate-glutamine cycle. As CKB and the creatine-phosphocreatine cycle are important in securing constant ATP availability, PTMs in CKB, and astrocyte dysfunction may disturb homeostasis, driving excitotoxicity in the AD brain. CKB and its activity could be promising biomarkers for monitoring early-stage energy deficits in AD.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Kotol
- Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca Sjöberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Wen Zhong
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fredrik Edfors
- Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Eberhard C, Mosher EP, Bumpus N, Orsburn BC. Tenofovir Activation Is Diminished in the Brain and Liver of Creatine Kinase Brain-Type Knockout Mice. ACS Pharmacol Transl Sci 2024; 7:222-235. [PMID: 38230280 PMCID: PMC10789144 DOI: 10.1021/acsptsci.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor prescribed for the treatment and prevention of human immunodeficiency virus infection and the treatment of chronic hepatitis B virus infection. Here, we demonstrate that creatine kinase brain-type (CKB) can form tenofovir-diphosphate (TFV-DP), the pharmacologically active metabolite, in vitro and identify nine missense mutations (C74S, R96P, S128R, R132H, R172P, R236Q, C283S, R292Q, and H296R) that diminish this activity. Additional characterization of these mutations reveals that five (R96P, R132H, R236Q, C283S, and R292Q) have ATP dephosphorylation catalytic efficiencies less than 20% of those of the wild type (WT), and seven (C74S, R96P, R132H, R172P, R236Q, C283S, and H296P) induce thermal instabilities. To determine the extent CKB contributes to TFV activation in vivo, we generated a CKB knockout mouse strain, Ckbtm1Nnb. Using an in vitro assay, we show that brain lysates of Ckbtm1Nnb male and female mice form 70.5 and 77.4% less TFV-DP than wild-type brain lysates of the same sex, respectively. Additionally, we observe that Ckbtm1Nnb male mice treated with tenofovir disoproxil fumarate for 14 days exhibit a 22.8% reduction in TFV activation in the liver compared to wild-type male mice. Lastly, we utilize mass spectrometry-based proteomics to elucidate the impact of the knockout on the abundance of nucleotide and small molecule kinases in the brain and liver, adding to our understanding of how the loss of CKB may be impacting tenofovir activation in these tissues. Together, our data suggest that disruptions in CKB may lower levels of active drugs in the brain and liver.
Collapse
Affiliation(s)
- Colten
D. Eberhard
- Department of Pharmacology
and Molecular Sciences, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Eric P. Mosher
- Department of Pharmacology
and Molecular Sciences, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Namandjé
N. Bumpus
- Department of Pharmacology
and Molecular Sciences, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C. Orsburn
- Department of Pharmacology
and Molecular Sciences, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
4
|
Wang Y, Gao P, Liu H, Wang T, Fan J, Jiang T. Association of creatine kinase with Alzheimer's disease pathology: A cross-sectional study. Chin Med J (Engl) 2024; 137:117-119. [PMID: 37455273 PMCID: PMC10766270 DOI: 10.1097/cm9.0000000000002773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 07/18/2023] Open
Affiliation(s)
- Yutong Wang
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Institute for Cardiovascular Science of Soochow University, Suzhou, Jiangsu 215000, China
| | - Peiyang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266071, China
| | - Hongman Liu
- Institute for Cardiovascular Science of Soochow University, Suzhou, Jiangsu 215000, China
- Cardiac Function Department, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000, China
| | - Tingyu Wang
- Institute for Cardiovascular Science of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Cardiac Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiaming Fan
- Institute for Cardiovascular Science of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Cardiac Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
5
|
Eberhard CD, Mosher EP, Bumpus NN, Orsburn BC. Tenofovir Activation is Diminished in the Brain and Liver of Creatine Kinase Brain-Type Knockout Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559370. [PMID: 37808667 PMCID: PMC10557616 DOI: 10.1101/2023.09.25.559370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor prescribed for the treatment and prevention of human immunodeficiency virus infection, and the treatment of chronic hepatitis B virus infection. Here, we demonstrate that creatine kinase brain-type (CKB) can form tenofovir-diphosphate (TFV-DP), the pharmacologically active metabolite, in vitro, and identify nine missense mutations (C74S, R96P, S128R, R132H, R172P, R236Q, C283S, R292Q, and H296R) that diminish this activity. Additional characterization of these mutations reveal that five (R96P, R132H, R236Q, C283S, and R292Q) have ATP dephosphorylation catalytic efficiencies less than 20% of wild-type (WT), and seven (C74S, R96P, R132H, R172P, R236Q, C283S, and H296P) induce thermal instabilities. To determine the extent CKB contributes to TFV activation in vivo, we generated a CKB knockout mouse strain, Ckbtm1Nnb. Using an in vitro assay, we show that brain lysates of Ckbtm1Nnb male and female mice form 70.5% and 77.4% less TFV-DP than wild-type brain lysates of the same sex, respectively. Additionally, we observe that Ckbtm1Nnb male mice treated with tenofovir disoproxil fumarate for 14 days exhibit a 22.8% reduction in TFV activation in liver compared to wild-type male mice. Lastly, we utilize mass spectrometry-based proteomics to elucidate the impact of the knockout on the abundance of nucleotide and small molecule kinases in the brain and liver, adding to our understanding of how loss of CKB may be impacting tenofovir activation in these tissues. Together, our data suggest that disruptions in CKB may lower levels of active drug in brain and liver.
Collapse
Affiliation(s)
- Colten D. Eberhard
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Eric P. Mosher
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Namandjé N. Bumpus
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Daniilidou M, Eroli F, Alanko V, Goikolea J, Latorre-Leal M, Rodriguez-Rodriguez P, Griffiths WJ, Wang Y, Pacciarini M, Brinkmalm A, Zetterberg H, Blennow K, Rosenberg A, Bogdanovic N, Winblad B, Kivipelto M, Ibghi D, Cedazo-Minguez A, Maioli S, Matton A. Alzheimer's disease biomarker profiling in a memory clinic cohort without common comorbidities. Brain Commun 2023; 5:fcad228. [PMID: 37680670 PMCID: PMC10481253 DOI: 10.1093/braincomms/fcad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25 kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.
Collapse
Affiliation(s)
- Makrina Daniilidou
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Francesca Eroli
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Vilma Alanko
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Julen Goikolea
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Maria Latorre-Leal
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, Swansea SA2 8PP, UK
| | | | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 90 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 90 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N3AR, UK
- UK Dementia Research Institute at UCL, London WC1N3AR, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 90 Mölndal, Sweden
| | - Anna Rosenberg
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, FI-70029 Kuopio, Finland
| | - Nenad Bogdanovic
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Delphine Ibghi
- Neurodegeneration Cluster, Rare and Neurologic Disease Research Sanofi R&D, F-91380 Chilly-Mazarin, France
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Neurodegeneration Cluster, Rare and Neurologic Disease Research Sanofi R&D, F-91380 Chilly-Mazarin, France
| | - Silvia Maioli
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Anna Matton
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|