1
|
Nishiguchi T, Yamanishi K, Gorantla N, Shimura A, Seki T, Ishii T, Aoyama B, Malicoat JR, Phuong NJ, Dye NJ, Yamanashi T, Iwata M, Shinozaki G. Lipopolysaccharide-Induced Delirium-Like Behavior and Microglial Activation in Mice Correlate With Bispectral Electroencephalography. J Gerontol A Biol Sci Med Sci 2024; 79:glae261. [PMID: 39492697 PMCID: PMC11584909 DOI: 10.1093/gerona/glae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 11/05/2024] Open
Abstract
Delirium is a multifactorial medical condition characterized by impairment across various mental functions and is one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Research focused on delirium has proven to be challenging due to a lack of objective measures for diagnosing patients, and few laboratory models have been validated. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes. We applied BSEEG to validate a lipopolysaccharide-induced mouse model of delirium. Moreover, we investigated the relationship between BSEEG score, delirium-like behaviors, and microglia activation in hippocampal dentate gyrus and cortex regions in young and aged mice. There was a significant correlation between BSEEG score and impairment of attention in young mice. Additionally, there was a significant correlation between BSEEG score and microglial activation in hippocampal dentate gyrus and cortex regions in young and aged mice. We have successfully validated the BSEEG method by showing its associations with a level of behavioral change and microglial activation in an lipopolysaccharide-induced mouse model of delirium. In addition, the BSEEG method was able to sensitively capture an lipopolysaccharide-induced delirium-like condition that behavioral tests could not capture because of a hypoactive state.
Collapse
Affiliation(s)
- Tsuyoshi Nishiguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kyosuke Yamanishi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Nipun Gorantla
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Akiyoshi Shimura
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomoteru Seki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takaya Ishii
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- iPS Cell-Based Drug Discovery Group, Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Osaka, Osaka, Japan
| | - Bun Aoyama
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Anesthesiology, National Hospital Organization Kochi Hospital, Kochi, Kochi, Japan
| | - Johnny R Malicoat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nathan James Phuong
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Nicole Jade Dye
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Takehiko Yamanashi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
2
|
Balezina OP, Tarasova EO, Bogacheva PO. Myogenic Classical Endocannabinoids, Their Targets and Activity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1759-1778. [PMID: 39523114 DOI: 10.1134/s0006297924100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
This review focuses on the recently discovered specific action of two classical endocannabinoids (ECs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA), in the case of their synthesis and degradation in skeletal muscles; in other words, this review is dedicated to properties and action of the myoendocannabinoid (myoEC) pool. Influence of this pool is considered at three different levels: at the level of skeletal muscles, motor synapses, and also at the level of the whole organism, including central nervous system. Special attention is paid to the still significantly underestimated and intriguing ability of ECs to have positive effect on energy exchange and contractile activity of muscle fibers, as well as on transmitter secretion in motor synapses. Role of muscle contractions in regulation of activity balance between the enzymes catalyzing synthesis and degradation of myoECs and, therefore, in the release of myoECs and exertion of their specific effects is thoroughly considered. Increasingly popular hypotheses about the prominent role of myoECs (AEA and/or 2-AG) in the rise of the overall level of ECs in the blood during muscle exercise and the development of "runner's high" and about the role of myoECs in the correction of a number of psychophysiological conditions (pain syndrome, stress, etc.) are discussed here. Thus, this review presents information about the myoEC pool from a totally new viewpoint, underlining its possible independent and non-trivial regulatory role in the body, in contrast to the traditional and well-known activity of neurogenic ECs.
Collapse
Affiliation(s)
- Olga P Balezina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Polina O Bogacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
3
|
Safdar M, Colosimo C, Khurshid MH, Spencer AL, Hejazi O, Castanon L, Hosseinpour H, Magnotti LJ, Bhogadi SK, Joseph B. Drugs, Delirium, and Trauma: Substance Use and Incidence of Delirium After Traumatic Brain Injury. J Surg Res 2024; 301:45-53. [PMID: 38909477 DOI: 10.1016/j.jss.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION There is a paucity of data on the effect of preinjury substance (alcohol, drugs) abuse on the risk of delirium in patients with traumatic brain injury (TBI). This study aimed to assess the incidence of delirium among patients with blunt TBI in association with different substances. METHODS We analyzed the 2020 American College of Surgeons-Trauma Quality Improvement Program. We included all adult (≥18 y) patients with blunt TBI who had a recorded substance (drugs and alcohol) screening. Our primary outcome was the incidence of delirium. RESULTS A total of 72,901 blunt TBI patients were identified. The mean (standard deviation) age was 56 (20) years and 68.0% were males. The median (interquartile range) injury severity score was 17 (10-25). Among the study population, 23.1% tested positive for drugs (Stimulants: 3.0%; Depressants: 2.9%, hallucinogens: 5.1%, Cannabinoids: 13.4%, TCAs: 0.1%), and 22.8% tested positive for Alcohol. Overall, 1856 (2.5%) experienced delirium. On univariate analysis, patients who developed delirium were more likely to have positive drug screening results. On multivariable regression analyses, positive screen tests for isolated stimulants (adjusted odds ratio [aOR]: 1.340, P = 0.018), tricyclic antidepressants (aOR: 3.107, P = 0.019), and cannabinoids (aOR: 1.326, P ≤ 0.001) were independently associated with higher odds of developing delirium. CONCLUSIONS Nearly one-fourth of adult patients with blunt TBI had an initial positive substance screening test. Patients with positive results for isolated stimulants, tricyclic antidepressants, and cannabinoids were at a higher risk of developing delirium, whereas this association was not evident with other drugs and alcohol-positive tests. These findings emphasize the need for early drug screening in TBI patients and close monitoring of patients with positive screening tests.
Collapse
Affiliation(s)
- Mohammad Safdar
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Colosimo
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Muhammad Haris Khurshid
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Audrey L Spencer
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Omar Hejazi
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Lourdes Castanon
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hamidreza Hosseinpour
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Louis J Magnotti
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Sai Krishna Bhogadi
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bellal Joseph
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
4
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
5
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|