1
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Boziki M, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Tzitiridou-Chatzopoulou M, Doulberis M, Kazakos E, Deretzi G, Grigoriadis N, Kountouras J. Impact of Mast Cell Activation on Neurodegeneration: A Potential Role for Gut-Brain Axis and Helicobacter pylori Infection. Neurol Int 2024; 16:1750-1778. [PMID: 39728753 DOI: 10.3390/neurolint16060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention. Activated MCs are multifunctional effector cells generated from hematopoietic stem cells that, together with dendritic cells, represent first-line immune defense mechanisms against pathogens and/or tissue destruction. METHODS This review aims to summarize evidence of MC implication in the pathogenesis of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. RESULTS In view of recent evidence that the gut-brain axis may be implicated in the pathogenesis of neurodegenerative diseases and the characterization of the neuroinflammatory component in the pathology of these diseases, this review also focuses on MCs as potential mediators in the gut-brain axis bi-directional communication and the possible role of Helicobacter pylori, a gastric pathogen known to alter the gut-brain axis homeostasis towards local and systemic pro-inflammatory responses. CONCLUSION As MCs and Helicobacter pylori infection may offer targets of intervention with potential therapeutic implications for neurodegenerative disease, more clinical and translational evidence is needed to elucidate this field.
Collapse
Affiliation(s)
- Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, 5001 Aarau, Switzerland
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Neurology, Papageorgiou General Hospital, 54629 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
3
|
Monteiro Neto JR, Lima VDA, Follmer C. Fibrillation of α-synuclein triggered by bacterial endotoxin and lipid vesicles is modulated by N-terminal acetylation and familial Parkinson's disease mutations. FEBS J 2024; 291:1151-1167. [PMID: 38069536 DOI: 10.1111/febs.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
It has been hypothesized that --Parkinson's disease (PD) may be initiated in the gastrointestinal tract, before manifesting in the central nervous system. In this respect, it was demonstrated that lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, accelerates the in vitro formation of α-synuclein (aSyn) fibrils, whose intracellular deposits is a histological hallmark of the degeneration of dopaminergic neurons in PD. Herein, N-terminal acetylation and missense mutations of aSyn (A30P, A53T, E46K, H50Q and G51D) linked to rare, early-onset forms of familial PD were investigated regarding their effect on aSyn aggregation stimulated by either LPS or small unilamellar lipid vesicles (SUVs). Our findings indicated that LPS as well as SUVs induce the fibrillation of N-terminally acetylated wild-type aSyn (Ac-aSyn-WT) more remarkably than the non-acetylated protein, while the LPS-free protein alone did not undergo fibrillation under our assay conditions. In addition, with the exception of A30P, PD mutations increased the fibrillation of Ac-aSyn in the presence of LPS compared with Ac-aSyn-WT. The most pronounced effect of LPS was noticed for A53T, as observed when either Thioflavin-T or JC-1 were used as fluorescent probes for fibrils. Overall, our results suggest for the first time the existence of a synergy between LPS and PD mutations/N-terminal acetylation toward aSyn fibrillation.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Vanderlei de Araújo Lima
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
5
|
Protti M, Cirrincione M, Palano S, Poeta E, Babini G, Magnifico MC, Barile SN, Balboni N, Massenzio F, Mahdavijalal M, Giorgi FM, Mandrioli R, Lasorsa FM, Monti B, Mercolini L. Targeted quantitative metabolic profiling of brain-derived cell cultures by semi-automated MEPS and LC-MS/MS. J Pharm Biomed Anal 2023; 236:115757. [PMID: 37801818 DOI: 10.1016/j.jpba.2023.115757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
The accurate characterisation of metabolic profiles is an important prerequisite to determine the rate and the efficiency of the metabolic pathways taking place in the cells. Changes in the balance of metabolites involved in vital processes such as glycolysis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), as well as in the biochemical pathways related to amino acids, lipids, nucleotides, and their precursors reflect the physiological condition of the cells and may contribute to the development of various human diseases. The feasible and reliable measurement of a wide array of metabolites and biomarkers possesses great potential to elucidate physiological and pathological mechanisms, aid preclinical drug development and highlight potential therapeutic targets. An effective, straightforward, sensitive, and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was developed for the simultaneous quali-quantitative analysis of 41 compounds in both cell pellet and cell growth medium obtained from brain-derived cell cultures. Sample pretreatment miniaturisation was achieved thanks to the development and optimisation of an original extraction/purification approach based on digitally programmed microextraction by packed sorbent (eVol®-MEPS). MEPS allows satisfactory and reproducible clean-up and preconcentration of both low-volume homogenate cell pellet lysate and cell growth medium with advantages including, but not limited to, minimal sample handling and method sustainability in terms of sample, solvents, and energy consumption. The MEPS-LC-MS/MS method showed good sensitivity, selectivity, linearity, and precision. As a proof of concept, the developed method was successfully applied to the analysis of both cell pellet and cell growth medium obtained from a line of mouse immortalised oligodendrocyte precursor cells (OPCs; Oli-neu cell line), leading to the unambiguous determination of all the considered target analytes. This method is thus expected to be suitable for targeted, quantitative metabolic profiling in most brain cell models, thus allowing accurate investigations on the biochemical pathways that can be altered in central nervous system (CNS) neuropathologies, including e.g., mitochondrial respiration and glycolysis, or use of specific nutrients for growth and proliferation, or lipid, amino acid and nucleotide metabolism.
Collapse
Affiliation(s)
- Michele Protti
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Cirrincione
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sarah Palano
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Eleonora Poeta
- Cellular Neurobiology Lab, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Giorgia Babini
- Cellular Neurobiology Lab, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nicola Balboni
- Cellular Neurobiology Lab, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Francesca Massenzio
- Cellular Neurobiology Lab, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Mohammadreza Mahdavijalal
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Federico M Giorgi
- Computational Genomics Lab, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Francesco M Lasorsa
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; National Research Council (CNR) Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Giovanni Amendola 122, 70126 Bari, Italy
| | - Barbara Monti
- Cellular Neurobiology Lab, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Laura Mercolini
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Grabowska AD, Wątroba M, Witkowska J, Mikulska A, Sepúlveda N, Szukiewicz D. Interplay between Systemic Glycemia and Neuroprotective Activity of Resveratrol in Modulating Astrocyte SIRT1 Response to Neuroinflammation. Int J Mol Sci 2023; 24:11640. [PMID: 37511397 PMCID: PMC10380505 DOI: 10.3390/ijms241411640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The flow of substances between the blood and the central nervous system is precisely regulated by the blood-brain barrier (BBB). Its disruption due to unbalanced blood glucose levels (hyper- and hypoglycemia) occurring in metabolic disorders, such as type 2 diabetes, can lead to neuroinflammation, and increase the risk of developing neurodegenerative diseases. One of the most studied natural anti-diabetic, anti-inflammatory, and neuroprotective compounds is resveratrol (RSV). It activates sirtuin 1 (SIRT1), a key metabolism regulator dependent on cell energy status. The aim of this study was to assess the astrocyte SIRT1 response to neuroinflammation and subsequent RSV treatment, depending on systemic glycemia. For this purpose, we used an optimized in vitro model of the BBB consisting of endothelial cells and astrocytes, representing microvascular and brain compartments (MC and BC), in different glycemic backgrounds. Astrocyte-secreted SIRT1 reached the highest concentration in hypo-, the lowest in normo-, and the lowest in hyperglycemic backgrounds. Lipopolysaccharide (LPS)-induced neuroinflammation caused a substantial decrease in SIRT1 in all glycemic backgrounds, as observed earliest in hyperglycemia. RSV partially counterbalanced the effect of LPS on SIRT1 secretion, most remarkably in normoglycemia. Our results suggest that abnormal glycemic states have a worse prognosis for RSV-therapy effectiveness compared to normoglycemia.
Collapse
Affiliation(s)
- Anna D. Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Joanna Witkowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Agnieszka Mikulska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Nuno Sepúlveda
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| |
Collapse
|
7
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
8
|
Li Z, Zhao T, Shi M, Wei Y, Huang X, Shen J, Zhang X, Xie Z, Huang P, Yuan K, Li Z, Li N, Qin D. Polyphenols: Natural food grade biomolecules for treating neurodegenerative diseases from a multi-target perspective. Front Nutr 2023; 10:1139558. [PMID: 36925964 PMCID: PMC10011110 DOI: 10.3389/fnut.2023.1139558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
As natural functional bioactive ingredients found in foods and plants, polyphenols play various antioxidant and anti-inflammatory roles to prevent the development of disease and restore human health. The multi-target modulation of polyphenols provides a novel practical therapeutic strategy for neurodegenerative diseases that are difficult to treat with traditional drugs like glutathione and cholinesterase inhibitors. This review mainly focuses on the efficacy of polyphenols on ischemic stroke, Parkinson's disease and Alzheimer's disease, including in vivo and in vitro experimental studies. It is further emphasized that polyphenols exert neuroprotective effects primarily through inhibiting production of oxidative stress and inflammatory cytokines, which may be the underlying mechanism. However, polyphenols are still rarely used as medicines to treat neurodegenerative diseases. Due to the lack of clinical trials, the mechanism of polyphenols is still in the stage of insufficient exploration. Future large-scale multi-center randomized controlled trials and in-depth mechanism studies are still needed to fully assess the safety, efficacy and side effects of polyphenols.
Collapse
Affiliation(s)
- Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Peidong Huang
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
de Siqueira EA, Magalhães EP, de Menezes RRPPB, Sampaio TL, Lima DB, da Silva Martins C, Neves KRT, de Castro Brito GA, Martins AMC, de Barros Viana GS. Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson's disease? Neurosci Lett 2023; 793:136997. [PMID: 36470505 DOI: 10.1016/j.neulet.2022.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic cells in the substantia nigra pars compacta. PD patients' brains show neuroinflammation, oxidative stress, and mitochondrial dysfunction. The present study aims to evaluate the neuroprotective activity of VD3 on astrocytes after their exposure to rotenone (ROT) a natural pesticide known to exhibit neurotoxic potential via the inhibition of mitochondrial complex I. Cell viability parameters were evaluated by the MTT test and staining with 7-AAD in cultures of astrocytes treated and untreated with VD3 (0.1, 0.5, and 1.0 ng/mL) and/or ROT (10 µg/mL or 5 µg/mL), and the cytoplasmic production of ROS and the cell death profile were measured by flow cytometry. Glutathione accumulation and ultrastructural changes were evaluated and immunocytochemistry assays for NF-kB and Nrf2 were also carried out. The results showed that VD3 improved the viability of cells previously treated with VD3 and then exposed to ROT, reducing the occurrence of necrotic and apoptotic events. Furthermore, cells exposed to ROT showed increased production of ROS, which decreased significantly with previous treatment with VD3. Importantly, the decrease by ROT in the mitochondrial transmembrane potential was significantly prevented after treating cells with VD3, especially at a concentration of 1 ng/mL. Therefore, treatment with VD3 protected astrocytes from damage caused by ROT, decreasing oxidative stress, decreasing NF-kB and Nrf2 expressions, and improving mitochondrial function. However, further investigation is needed regarding the participation and mechanism of action of VD3 in this cellular model of PD focusing on the crosstalk between Nrf2 and NF-kB.
Collapse
|
10
|
Innate Immunity in Cardiovascular Diseases-Identification of Novel Molecular Players and Targets. J Clin Med 2023; 12:jcm12010335. [PMID: 36615135 PMCID: PMC9821340 DOI: 10.3390/jcm12010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.
Collapse
|
11
|
Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation. Cells 2022; 12:cells12010160. [PMID: 36611953 PMCID: PMC9818437 DOI: 10.3390/cells12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has been suggested that CSDs could activate microglia (Mg) leading to increased neuroinflammation levels, which ultimately lead to neuronal dysfunction. However, the detailed mechanisms underlying CSD-mediated microglial activation remain mostly unexplored. In this study, we used mice with three-weeks of sleep fragmentation (SF) to explore the underlying pathways responsible for Mg activation. Our results revealed that SF activates Mg in the hippocampus (HP) but not in the striatum and prefrontal cortex (PFc). SF increased the levels of corticotropin-releasing hormone (CRH) in the HP. In vitro mechanism studies revealed that CRH activation of Mg involves galectin 3 (Gal3) upregulation and autophagy dysregulation. CRH could disrupt lysosome membrane integrity resulting in lysosomal cathepsins leakage. CRHR2 blockage mitigated CRH-mediated effects on microglia in vitro. SF mice also show increased Gal3 levels and autophagy dysregulation in the HP compared to controls. Taken together, our results show that SF-mediated hippocampal Mg activation involves CRH mediated galectin 3 and autophagy dysregulation. These findings suggest that targeting the hippocampal CRH system might be a novel therapeutic approach to ameliorate CSD-mediated neuroinflammation and neurodegenerative diseases.
Collapse
|
12
|
Muslikh FA, Samudra RR, Ma’arif B, Ulhaq ZS, Hardjono S, Agil M. In Silico Molecular Docking and ADMET Analysis for Drug Development of Phytoestrogens Compound with Its Evaluation of Neurodegenerative Diseases. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i4.3801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neurodegenerative disease is one of the problems faced by postmenopausal women due to estrogen deficiency. Phytoestrogen compounds can be used as an alternative treatment for diseases caused by estrogen deficiency by binding to their receptors through the estrogen receptor (ER) dependent pathway. With in silico studies, this study aims to predict how phytoestrogen compounds will stop neurons from dying by using the dependent ER pathway. Genistein, daidzein, glycitein, formononetin, biochanin A, equol, pinoresinol, 4-methoxypinoresinol, eudesmin, α-amyrin, and β-amyrin compounds were prepared with ChemDraw Ultra 12.0. Then their pharmacokinetic and pharmacodynamic properties were examined using SwissADME. Geometry optimization of the compound was performed using Avogadro 1.0.1, and molecular docking of the compound to the ERα (1A52) and ERβ (5TOA) receptors was performed using AutoDock vina (PyRx 0.8). The interaction visualization stage was carried out with Biovia Discover Studio 2021, while the toxicity values of the compounds were analyzed using pkCSM and ProTox II. The results showed that the equol compound met the pharmacokinetic, pharmacodynamic, toxicity criteria, and had similarities with the native ligand 17β-estradiol. Equol compound inhibits neurodegeneration via an ER-dependent pathway by binding to ERα (1A52) and ERβ (5TOA) receptors.
Collapse
|
13
|
De Chirico F, Poeta E, Babini G, Piccolino I, Monti B, Massenzio F. New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Front Cell Neurosci 2022; 16:1038721. [PMID: 36523814 PMCID: PMC9744797 DOI: 10.3389/fncel.2022.1038721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 09/17/2023] Open
Abstract
Microglia activation and neuroinflammation have been extensively studied in murine models of neurodegenerative diseases; however, to overcome the genetic differences between species, a human cell model of microglia able to recapitulate the activation profiles described in patients is needed. Here we developed human models of Parkinson's like neuroinflammation by using the human microglia clone 3 (HMC3) cells, whose activation profile in response to classic inflammatory stimuli has been controversial and reported only at mRNA levels so far. In fact, we showed the increased expression of the pro-inflammatory markers iNOS, Caspase 1, IL-1β, in response to IFN-γ plus high glucose, a non-specific disease stimulus that emphasized the dynamic polarization and heterogenicity of the microglial population. More specifically, we demonstrated the polarization of HMC3 cells through the upregulation of iNOS expression and nitrite production in response to the Parkinson's like stimuli, 6-hydroxidopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the latter depending on the NF-κB pathway. Furthermore, we identified inflammatory mediators that promote the pro-inflammatory activation of human microglia as function of different pathways that can simulate the phenotypic transition according to the stage of the pathology. In conclusion, we established and characterized different systems of HMC3 cells activation as in vitro models of Parkinson's like neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|