1
|
Zhang YX, Ma L, Yiliaikebaier M, Zhang W, Li RX, Wang Y, Chen Z, Xu GP. Intravenous lidocaine for the treatment of sepsis-associated encephalopathy: a retrospective cohort study. Neurol Res 2025; 47:115-121. [PMID: 39788609 DOI: 10.1080/01616412.2024.2448634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of intraoperative intravenous lidocaine administration in the management of sepsis-associated encephalopathy (SAE). METHODS This retrospective cohort analysis included 165 patients diagnosed with SAE, who were categorized into two groups: the lidocaine group (n = 55) and the control group (n = 110). The lidocaine group received an intravenous injection of lidocaine at 1.5 mg/kg following anesthesia induction, and then received a continuous infusion at 1.5 mg/kg/h until the completion of surgery. The control group did not receive lidocaine during surgery. Data collected included patient demographics, medical history, infection site, Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, Glasgow Coma Scale (GCS) score, laboratory results, anesthetic agents used, surgery duration, and length of stay in the intensive care unit (ICU). The primary outcome was the in-hospital prognosis of SAE. RESULTS Patients in the lidocaine group had a significantly shorter ICU stay and a significantly higher rate of favorable prognosis compared with the control group (p < 0.05). Multivariate logistic regression analysis identified age and surgery duration as risk factors for SAE prognosis, whereas intraoperative intravenous lidocaine, GCS score, and intravenous dexmedetomidine emerged as protective factors. CONCLUSION Intraoperative intravenous administration of lidocaine significantly enhanced the prognosis of SAE patients.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Lin Ma
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Mailipate Yiliaikebaier
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Wen Zhang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Rui-Xuan Li
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Yang Wang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Zhe Chen
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| | - Gui-Ping Xu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Yang L, Li J, Liu F, Chai X, Fang Z, Zhang X. The Biological Changes of Synaptic Plasticity in the Pathological Process of Sepsis-associated Encephalopathy. Curr Neuropharmacol 2025; 23:359-374. [PMID: 39473252 DOI: 10.2174/1570159x23666241028105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 03/25/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a form of cognitive and psychological impairment resulting from sepsis, which occurs without any central nervous system infection or structural brain injury. Patients may experience long-term cognitive deficits and psychiatric disorders even after discharge. However, the underlying mechanism remains unclear. As cognitive function and mental disease are closely related to synaptic plasticity, it is presumed that alterations in synaptic plasticity play an essential role in the pathological process of SAE. Here, we present a systematic description of the pathogenesis of SAE, which is primarily driven by glial cell activation and subsequent release of inflammatory mediators. Additionally, we elucidate the alterations in synaptic plasticity that occur during SAE and comprehensively discuss the roles played by glial cells and inflammatory factors in this process. In this review, we mainly discuss the synaptic plasticity of SAE, and the main aim is to show the consequences of SAE on inflammatory factors and how they affect synaptic plasticity. This review may enhance our understanding of the mechanism underlying cognitive dysfunction and provide valuable insights into identifying appropriate therapeutic targets for SAE.
Collapse
Affiliation(s)
- Lin Yang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Li
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, 100142, China
| | - Fuhong Liu
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin Chai
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
3
|
Whitfield S, Chetram D, Rosenman D. 75-Year-Old Man With Dysuria, Urinary Frequency, and Altered Mental Status. Mayo Clin Proc 2024; 99:1989-1994. [PMID: 39520420 DOI: 10.1016/j.mayocp.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Savannah Whitfield
- Resident in Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN, USA
| | - Deandra Chetram
- Resident in Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN, USA
| | - David Rosenman
- Advisor to residents and Consultant in Hospital Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Lv X, Jia M, Feng X, Jian JX, Yang JJ, Ma DQ, Ji MH, Diao YG, Shen JC. STING Driving Synaptic Phagocytosis of Hippocampal Microglia/Macrophages Contributes to Cognitive Impairment in Sepsis-Associated Encephalopathy in Mice. CNS Neurosci Ther 2024; 30:e70166. [PMID: 39699038 DOI: 10.1111/cns.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/21/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a serious neurologic complication in septic patients with poor prognoses. There is increasing evidence that stimulator of interferon genes (STING) plays a crucial role in neuroinflammation and cognitive impairment. However, whether sepsis associated with STING changes contributes to cognitive impairment is unknown. METHODS Male adult mice received lipopolysaccharide (LPS) injection (a single dose of 4 mg/kg; i.p. injection) and 30 min later, they were injected with STING inhibitor C-176 (a single dose of 30 mg/kg, i.p. injection). Behavioral assessments, biochemical measurements, in vivo and ex vivo electrophysiology techniques were conducted to investigate the association between LPS-induced STING overexpression and cognitive function. RESULTS Cognitive impairment was associated with STING overexpression and activation of microglia/macrophages. Phagocytosis of microglia/macrophages as well as complement C1q release were increased after LPS injection, leading to abnormal pruning synapses, synaptic transmission reduction, long-term potentiation (LTP) impairment, as well as abnormal theta oscillation in the hippocampus. Notably, STING inhibitor C-176 significantly reversed these changes. CONCLUSIONS Sepsis-induced STING overexpression in microglia/macrophages may lead to synaptic loss, abnormal theta oscillation and LTP impairment through microglia/macrophages activation and complement C1q modulation, ultimately resulting in cognitive impairment.
Collapse
Affiliation(s)
- Xin Lv
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Feng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Xiong Jian
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Da-Qing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
- Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Gang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Zhan Y, Zhang L, Sun J, Yao H, Chen J, Tian M. ADSC-derived exosomes provide neuroprotection in sepsis-associated encephalopathy by regulating hippocampal pyroptosis. Exp Neurol 2024; 380:114900. [PMID: 39059736 DOI: 10.1016/j.expneurol.2024.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIMS Adipose-derived stem cell (ADSC)-derived exosomes have been recognized for their neuroprotective effects in various neurological diseases. This study investigates the potential neuroprotective effects of ADSC-derived exosomes in sepsis-associated encephalopathy (SAE). METHODS Behavioral cognitive functions were evaluated using the open field test, Y-maze test, and novel object recognition test. Brain activity was assessed through functional magnetic resonance imaging (fMRI). Pyroptosis was measured using immunofluorescence staining and western blotting. RESULTS Our findings indicate that ADSC-derived exosomes mitigate cognitive impairment, improve survival rates, and prevent weight loss in SAE mice. Additionally, exosomes protect hippocampal function in SAE mice, as demonstrated by fMRI evaluations. Furthermore, SAE mice exhibit neuronal damage and infiltration of inflammatory cells in the hippocampus, conditions which are reversed by exosome treatment. Moreover, our study highlights the downstream regulatory role of the NLRP3/caspase-1/GSDMD signaling pathway as a crucial mechanism in alleviating hippocampal inflammation. CONCLUSION ADSC-derived exosomes confer neuroprotection in SAE models by mediating the NLRP3/caspase-1/GSDMD pathway, thereby ameliorating cognitive impairment.
Collapse
Affiliation(s)
- Yunliang Zhan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210002, Jiangsu Province, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, China.
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
6
|
Cui Q, Qin N, Zhang Y, Miao Y, Xie L, Ma X, Zhang Z, Xie P. Neuroprotective effects of annexin A1 tripeptide in rats with sepsis-associated encephalopathy. Biotechnol Appl Biochem 2024; 71:701-711. [PMID: 38409880 DOI: 10.1002/bab.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.
Collapse
Affiliation(s)
- Qiao Cui
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Nannan Qin
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yonghan Zhang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Zhou Y, Bai L, Tang W, Yang W, Sun L. Research progress in the pathogenesis of sepsis-associated encephalopathy. Heliyon 2024; 10:e33458. [PMID: 39027435 PMCID: PMC11254713 DOI: 10.1016/j.heliyon.2024.e33458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a syndrome that causes dysfunction of multiple organs due to the host's uncontrolled response to infection and is a significant contributor to morbidity and mortality in intensive care units worldwide. Surviving patients are often left with acute brain injury and long-term cognitive impairment, known as sepsis-associated encephalopathy (SAE). In recent years, researchers have directed their focus towards the pathogenesis of SAE. However, due to the complexity of its development, there remains a lack of effective treatment measures that arise as a serious issue affecting the prognosis of sepsis patients. Further research on the possible causes of SAE aims to provide clinicians with potential therapeutic targets and help develop targeted prevention strategies. This paper aims to review recent research on the pathogenesis of SAE, in order to enhance our understanding of this syndrome.
Collapse
Affiliation(s)
- Yue Zhou
- Teaching Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Bai
- Department of Medical Oncology, Dalian NO.3 People's Hospital, Dalian, 116091, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
Srivastava V, Singh S. Organ support in sepsis: A panoramic view from infection to death. Med J Armed Forces India 2024; 80:4-9. [PMID: 38239603 PMCID: PMC10793238 DOI: 10.1016/j.mjafi.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024] Open
Abstract
Despite significant advancements in medical research, sepsis persists as a leading cause of mortality in intensive care units (ICUs). Sepsis intricately contributes to organ failure, amplifying both morbidity and mortality. In these instances, a comprehensive comprehension of the physiology of each organ is imperative for accurate diagnosis and effective management. Within the context of an ICU clinical scenario, a meticulous evaluation and monitoring of six pivotal organ systems cardiovascular, renal, respiratory, neurological, hematological, and hepatic are essential. The primary objective in managing sepsis-induced organ failure is the early detection and intervention, encompassing timely administration of antibiotics, identification and control of the infection source, and implementation of supportive therapy. Despite the extensive body of medical literature, there is a conspicuous absence of evidence-based multi-organ management strategies for such patients. The intricate interplay between organs, commonly referred to as organ crosstalk, presents a formidable challenge in navigating the complexities of sepsis management.
Collapse
Affiliation(s)
| | - Shalendra Singh
- Senior Advisor (Anaesthesia) & Neuroanaesthesiologist, Command Hospital (Northern Commmand), Udhampur, India
| |
Collapse
|
9
|
Hazenberg L, Aries M, Beqiri E, Mess WH, van Mook W, Delnoij T, Zeiler FA, van Kuijk S, Tas J. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest? J Clin Monit Comput 2023; 37:1427-1430. [PMID: 37195622 DOI: 10.1007/s10877-023-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Near-infrared spectroscopy (NIRS) has been suggested as a non-invasive monitoring technique to set cerebral autoregulation (CA) guided ABP targets (ABPopt) in comatose patients with hypoxic-ischemic brain injury (HIBI) following cardiac arrest. We aimed to determine whether NIRS-derived CA and ABPopt values differ between left and right-sided recordings in these patients. METHODS Bifrontal regional oxygen saturation (rSO2) was measured using INVOS or Fore-Sight devices. The Cerebral Oximetry index (COx) was determined as a CA measure. ABPopt was calculated using a published algorithm with multi-window weighted approach. A paired Wilcoxon signed rank test and intraclass correlation coefficients (ICC) were used to compare (1) systematic differences and (2) degree of agreement between left and right-sided measurements. RESULTS Eleven patients were monitored. In one patient there was malfunctioning of the right-sided optode and in one patient not any ABPopt value was calculated. Comparison of rSO2 and COx was possible in ten patients and ABPopt in nine patients. The average recording time was 26 (IQR, 22-42) hours. The ABPopt values were not significantly different between the bifrontal recordings (80 (95%-CI 76-84) and 82 (95%-CI 75-84) mmHg) for the left and right recordings, p = 1.0). The ICC for ABPopt was high (0.95, 0.78-0.98, p < 0.001). Similar results were obtained for rSO2 and COx. CONCLUSION We found no differences between left and right-sided NIRS recordings or CA estimation in comatose and ventilated HIBI patients. This suggests that in these patients without signs of localized pathology unilateral recordings might be sufficient to estimate CA status or provide ABPopt targets.
Collapse
Affiliation(s)
- L Hazenberg
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Mjh Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - E Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - W H Mess
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wnka van Mook
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Academy for Postgraduate Training, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
| | - T Delnoij
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Manitoba, Canada
- Division of Anesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Smj van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Tas
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|