1
|
Kwon KJ, Kim HY, Han SH, Shin CY. Future Therapeutic Strategies for Alzheimer's Disease: Focus on Behavioral and Psychological Symptoms. Int J Mol Sci 2024; 25:11338. [PMID: 39518892 PMCID: PMC11547068 DOI: 10.3390/ijms252111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive, degenerative brain disorder that impairs memory and thinking skills, leading to significant economic and humanistic burdens. It is associated with various neuropsychiatric symptoms (NPS) such as anxiety, agitation, depression, aggression, apathy, and psychosis. NPSs are common in patients with AD, affecting up to 97% of individuals diagnosed with AD. The severity of NPS is linked to disease progression and cognitive decline. NPS in Alzheimer's disease leads to increased morbidity, mortality, caregiver burden, earlier nursing home placement, and higher healthcare costs. Despite their significant impact, clinical research on NPS in AD is limited. In clinical settings, accurately distinguishing and diagnosing NPS related to AD remains a challenge. Additionally, conventional treatments for NPS in AD are often ineffective, highlighting the need for new therapies that target these specific symptoms. Understanding these comorbidities can aid in early diagnosis and better management of AD. In this review, we provide a summary of the various neurological and psychiatric symptoms (NPS) associated with AD and new candidates under development for the treatment of NPS based on their therapeutic targets and mechanisms. On top of the conventional NPS studied so far, this review adds recent advancements in the understanding of social functional impairment in AD. This review also provides information that can contribute to the advancement of studies and translational research in this field by emphasizing therapeutic targets and mechanisms of action focused on AD-related NPS rather than conventional mechanisms targeted in AD drug development. Above all, considering the relative lack of research in this new field despite the importance of clinical, medical, and translational research, it may increase interest in NPS in AD, its pathophysiological mechanisms, and potential therapeutic candidates such as molecules with antioxidant potential.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
| |
Collapse
|
2
|
Liang ZK, Xiong W, Wang C, Chen L, Zou X, Mai JW, Dong B, Guo C, Xin WJ, Luo DX, Xu T, Feng X. Resolving neuroinflammatory and social deficits in ASD model mice: Dexmedetomidine downregulates NF-κB/IL-6 pathway via α2AR. Brain Behav Immun 2024; 119:84-95. [PMID: 38552922 DOI: 10.1016/j.bbi.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that severely affects individuals' daily life and social development. Unfortunately, there are currently no effective treatments for ASD. Dexmedetomidine (DEX) is a selective agonist of α2 adrenergic receptor (α2AR) and is widely used as a first-line medication for sedation and hypnosis in clinical practice. In recent years, there have been reports suggesting its potential positive effects on improving emotional and cognitive functions. However, whether dexmedetomidine has therapeutic effects on the core symptoms of ASD, namely social deficits and repetitive behaviors, remains to be investigated. In the present study, we employed various behavioral tests to assess the phenotypes of animals, including the three-chamber, self-grooming, marble burying, open field, and elevated plus maze. Additionally, electrophysiological recordings, western blotting, qPCR were mainly used to investigate and validate the potential mechanisms underlying the role of dexmedetomidine. We found that intraperitoneal injection of dexmedetomidine in ASD model mice-BTBR T+ Itpr3tf/J (BTBR) mice could adaptively improve their social deficits. Further, we observed a significant reduction in c-Fos positive signals and interleukin-6 (IL-6) expression level in the prelimbic cortex (PrL) of the BTBR mice treated with dexmedetomidine. Enhancing or inhibiting the action of IL-6 directly affects the social behavior of BTBR mice. Mechanistically, we have found that NF-κB p65 is a key pathway regulating IL-6 expression in the PrL region. In addition, we have confirmed that the α2AR acts as a receptor switch mediating the beneficial effects of dexmedetomidine in improving social deficits. This study provides the first evidence of the beneficial effects of dexmedetomidine on core symptoms of ASD and offers a theoretical basis and potential therapeutic approach for the clinical treatment of ASD.
Collapse
Affiliation(s)
- Zheng-Kai Liang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Wei Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Li Chen
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Xin Zou
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou 516000, PR China
| | - Bo Dong
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Chongqi Guo
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Wen-Jun Xin
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou 516000, PR China.
| | - Ting Xu
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, PR China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
3
|
Lian X, Zhang X, Chen W, Xue F, Wang G. Dexmedetomidine mitigates neuroinflammation in an Alzheimer's disease mouse model via the miR-204-3p/FBXL7 signaling axis. Brain Res 2024; 1822:148612. [PMID: 37778649 DOI: 10.1016/j.brainres.2023.148612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by neuroinflammation. Dexmedetomidine (Dex) is known for its neuroprotective properties in clinical settings. In this study, we investigated the potential of Dex in protecting against neuroinflammation in an AD mouse model induced by amyloid-beta (Aβ) injection. First, in the AD mouse model, Aβ injection were administered, and the model was confirmed through behavioral tests, including the Morris water maze and Y-maze. Neuroinflammatory states in Aβ-injected mice were assessed using hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Expression levels of microRNA (miR)-204-3p and F-box/LRR-repeat protein 7 (FBXL7) in mouse tissues were determined through real-time quantitative polymerase chain reaction and Western blot. The binding interaction between miR-204-3p and FBXL7 was elucidated using dual-luciferase analysis. Aβ-injected mice exhibited cognitive impairment, neuroinflammation, and downregulated miR-204-3p. Upregulation of miR-204-3p reduced inflammatory infiltration and mitigated neuroinflammation in Aβ-injected mice. Dex treatment reduced inflammation in hippocampal tissues of Aβ-injected mice. Dex treatment upregulated miR-204-3p, leading to suppressed FBXL7 expression in tissues. Inhibition of miR-204-3p or overexpression of FBXL7 reversed the alleviating effect of Dex on neuroinflammation in Aβ-injected mice. Overall, Dex increased miR-204-3p expression, resulting in the inhibition of FBXL7, and subsequently alleviated neuroinflammation in Aβ-injected mice.
Collapse
Affiliation(s)
- Xia Lian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaomin Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenchao Chen
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fang Xue
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan 572000, China.
| |
Collapse
|
4
|
Park K, Kim R, Cho K, Kong CH, Jeon M, Kang WC, Jung SY, Jang DS, Ryu JH. Panaxcerol D from Panax ginseng ameliorates the memory impairment induced by cholinergic blockade or Aβ 25-35 peptide in mice. J Ginseng Res 2024; 48:59-67. [PMID: 38223823 PMCID: PMC10785420 DOI: 10.1016/j.jgr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background Alzheimer's disease (AD) has memory impairment associated with aggregation of amyloid plaques and neurofibrillary tangles in the brain. Although anti-amyloid β (Aβ) protein antibody and chemical drugs can be prescribed in the clinic, they show adverse effects or low effectiveness. Therefore, the development of a new drug is necessarily needed. We focused on the cognitive function of Panax ginseng and tried to find active ingredient(s). We isolated panaxcerol D, a kind of glycosyl glyceride, from the non-saponin fraction of P. ginseng extract. Methods We explored effects of acute or sub-chronic administration of panaxcerol D on cognitive function in scopolamine- or Aβ25-35 peptide-treated mice measured by several behavioral tests. After behavioral tests, we tried to unveil the underlying mechanism of panaxcerol D on its cognitive function by Western blotting. Results We found that pananxcerol D reversed short-term, long-term and object recognition memory impairments. The decreased extracellular signal-regulated kinases (ERK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) in scopolamine-treated mice was normalized by acute administration of panaxcerol D. Glial fibrillary acidic protein (GFAP), caspase 3, NF-kB p65, synaptophysin and brain-derived neurotrophic factor (BDNF) expression levels in Aβ25-35 peptide-treated mice were modulated by sub-chronic administration of panaxcerol D. Conclusion Pananxcerol D could improve memory impairments caused by cholinergic blockade or Aβ accumulation through increased phosphorylation level of ERK or its anti-inflammatory effect. Thus, panaxcerol D as one of non-saponin compounds could be used as an active ingredient of P. ginseng for improving cognitive function.
Collapse
Affiliation(s)
- Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ranhee Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungnam Cho
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ho A, Ngala B, Yamada C, Garcia C, Duarte C, Akkaoui J, Ciolac D, Nusbaum A, Kochen W, Efremova D, Groppa S, Nathanson L, Bissel S, Oblak A, Kacena MA, Movila A. IL-34 exacerbates pathogenic features of Alzheimer's disease and calvaria osteolysis in triple transgenic (3x-Tg) female mice. Biomed Pharmacother 2023; 166:115435. [PMID: 37666180 DOI: 10.1016/j.biopha.2023.115435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aβ40 and Aβ42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.
Collapse
Affiliation(s)
- Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dumitru Ciolac
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William Kochen
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Daniela Efremova
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Stanislav Groppa
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Stephanie Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| |
Collapse
|
6
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|