1
|
Carrillo González NJ, Reyes Gutierrez GS, Campos-Ordoñez T, Castro-Torres RD, Beas Zárate C, Gudiño-Cabrera G. GFAPβ and GFAPδ Isoforms Expression in Mesenchymal Stem Cells, MSCs Differentiated Towards Schwann-like, and Olfactory Ensheathing Cells. Curr Issues Mol Biol 2025; 47:35. [PMID: 39852150 PMCID: PMC11764465 DOI: 10.3390/cimb47010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Olfactory ensheathing cells (OECs) and mesenchymal stem cells (MSCs) differentiated towards Schwann-like have plasticity properties. These cells express the Glial fibrillary acidic protein (GFAP), a type of cytoskeletal protein that significantly regulates many cellular functions, including those that promote cellular plasticity needed for regeneration. However, the expression of GFAP isoforms (α, β, and δ) in these cells has not been characterized. We evaluated GFAP isoforms (α, β, and δ) expression by Polymerase Chain Reaction (PCR) assay in three conditions: (1) OECs, (2) cells exposed to OECs-conditioned medium and differentiated to Schwann-like cells (dBM-MSCs), and (3) MSC cell culture from rat bone marrow undifferentiated (uBM-MSCs). First, the characterization phenotyping was verified by morphology and immunocytochemistry, using p75, CD90, and GFAP antibodies. Then, we found the expression of GFAP isoforms (α, β, and δ) in the three conditions; the expression of the GFAPα (10.95%AUC) and GFAPβ (9.17%AUC) isoforms was predominantly in OECs, followed by dBM-MSCs (α: 3.99%AUC, β: 5.66%AUC) and uBM-MSCs (α: 2.47%AUC, β: 2.97%AUC). GFAPδ isoform has a similar expression in the three groups (OEC: 9.21%AUC, dBM-MSCs: 11.10%AUC, uBM-MSCs: 9.21%AUC). These findings suggest that expression of different GFAPδ and GFAPβ isoforms may regulate cellular plasticity properties, potentially contributing to tissue remodeling processes by OECs, dBM-MSCs, and uBM-MSCs.
Collapse
Affiliation(s)
- Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| | - Gabriela Stefania Reyes Gutierrez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| | - Rubén D. Castro-Torres
- Laboratorio de Neurobiotecnología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (R.D.C.-T.); (C.B.Z.)
| | - Carlos Beas Zárate
- Laboratorio de Neurobiotecnología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (R.D.C.-T.); (C.B.Z.)
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico; (N.J.C.G.); (G.S.R.G.); (T.C.-O.)
| |
Collapse
|
2
|
McDonald AJ, Mascagni F. Specific neuronal subpopulations in the rat basolateral amygdala express high levels of nonphosphorylated neurofilaments. J Comp Neurol 2021; 529:3292-3312. [PMID: 33960421 DOI: 10.1002/cne.25169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022]
Abstract
Cortical pyramidal neurons (PNs) containing nonphosphorylated neurofilaments (NNFs) localized with the SMI-32 monoclonal antibody have been shown to be especially vulnerable to degeneration in Alzheimer's disease (AD). The present investigation is the first to study the expression of SMI-32+ NNFs in neurons of the basolateral nuclear complex of the amygdala (BNC), which contains cortex-like PNs and nonpyramidal neurons (NPNs). We observed that PNs in the rat basolateral nucleus (BL), but not in the lateral (LAT) or basomedial (BM) nuclei, have significant levels of SMI-32-ir in their somata with antibody diluents that did not contain Triton X-100, but staining in these cells was greatly attenuated when the antibody diluent contained 0.3% Triton. Using Triton-containing diluents, we found that all SMI-32+ neurons in all three of the BNC nuclei were NPNs. Using a dual-labeling immunoperoxidase technique, we demonstrated that most of these SMI-32+ NPNs were parvalbumin-positive (PV+) or somatostatin-positive NPNs but not vasoactive intestinal peptide-positive or neuropeptide Y-positive NPNs. Using a technique that combines retrograde tracing with SMI-32 immunohistochemistry using intermediate levels of Triton in the diluent, we found that all BNC neurons projecting to the mediodorsal thalamic nucleus (MD) were large NPNs, and most were SMI-32+. In contrast, BNC neurons projecting to the ventral striatum or cerebral cortex were PNs that expressed low levels of SMI-32 immunoreactivity (SMI-32-ir) in the BL, and no SMI-32-ir in the LAT or BM. These data suggest that the main neuronal subpopulations in the BNC that degenerate in AD may be PV+ and MD-projecting NPNs.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Franco Mascagni
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Fulopova B, Stuart KE, Bennett W, Bindoff A, King AE, Vickers JC, Canty AJ. Regional differences in beta amyloid plaque deposition and variable response to midlife environmental enrichment in the cortex of APP/PS1 mice. J Comp Neurol 2020; 529:1849-1862. [PMID: 33104234 DOI: 10.1002/cne.25060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023]
Abstract
Environmentally enriched housing conditions can increase performance on cognitive tasks in APP/PS1 mice; however, the potential effects of environmental enrichment (EE) on disease modification in terms of pathological change are inconclusive. We hypothesized that previous contrasting findings may be attributable to regional differences in susceptibility to amyloid beta (Aβ) plaque deposition in cortical regions that are functionally associated with EE. We characterized fibrillar plaque deposition in 6, 12, and 18-22 months old APP/PS1 mice in the prefrontal (PFC), somatosensory (SS2), and primary motor cortex (M1). We found a significant increase in plaque load between 6 and 12 months in all regions. In animals over 12 months, only the PFC region continued to significantly accumulate plaques. Additionally, 12 months old animals subjected to 6 months of EE showed improved spatial navigation and had significantly fewer plaques in M1 and SS2, but not in the PFC. These findings suggest that the PFC region is selectively susceptible to Aβ deposition and less responsive to the attenuating effects of EE. In contrast, M1 and SS2 regions plateau with respect to Aβ deposition by 12 months of age and are susceptible to amyloid pathology modification by midlife EE.
Collapse
Affiliation(s)
- Barbora Fulopova
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Kimberley E Stuart
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - William Bennett
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Collins JM, Woodhouse A, Bye N, Vickers JC, King AE, Ziebell JM. Pathological Links between Traumatic Brain Injury and Dementia: Australian Pre-Clinical Research. J Neurotrauma 2020; 37:782-791. [PMID: 32046575 DOI: 10.1089/neu.2019.6906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) can cause persistent cognitive changes and ongoing neurodegeneration in the brain. Accumulating epidemiological and pathological evidence implicates TBI in the development of Alzheimer's disease, the most common cause of dementia. Further, the TBI-induced form of dementia, called chronic traumatic encephalopathy, shares many pathological hallmarks present in multiple different diseases which cause dementia. The inflammatory and neuritic responses to TBI and dementia overlap, indicating that they may share common pathological mechanisms and that TBI may ultimately cause a pathological cascade culminating in the development of dementia. This review explores Australian pre-clinical research investigating the pathological links between TBI and dementia.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Pharmacy, and College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Dyer M, Phipps AJ, Mitew S, Taberlay PC, Woodhouse A. Age, but Not Amyloidosis, Induced Changes in Global Levels of Histone Modifications in Susceptible and Disease-Resistant Neurons in Alzheimer's Disease Model Mice. Front Aging Neurosci 2019; 11:68. [PMID: 31001106 PMCID: PMC6456813 DOI: 10.3389/fnagi.2019.00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
There is increasing interest in the role of epigenetic alterations in Alzheimer’s disease (AD). The epigenome of every cell type is distinct, yet data regarding epigenetic change in specific cell types in aging and AD is limited. We investigated histone tail modifications in neuronal subtypes in wild-type and APP/PS1 mice at 3 (pre-pathology), 6 (pathology-onset) and 12 (pathology-rich) months of age. In neurofilament (NF)-positive pyramidal neurons (vulnerable to AD pathology), and in calretinin-labeled interneurons (resistant to AD pathology) there were no global alterations in histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 27 acetylation (H3K27ac) or histone 3 lysine 27 trimethylation (H3K27me3) in APP/PS1 compared to wild-type mice at any age. Interestingly, age-related changes in the presence of H3K27ac and H3K27me3 were detected in NF-labeled pyramidal neurons and calretinin-positive interneurons, respectively. These data suggest that the global levels of histone modifications change with age, whilst amyloid plaque deposition and its sequelae do not result in global alterations of H3K4me3, H3K27ac and H3K27me3 in NF-positive pyramidal neurons or calretinin-labeled interneurons.
Collapse
Affiliation(s)
- Marcus Dyer
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.,Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stanislaw Mitew
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Höfling C, Shehabi E, Kuhn PH, Lichtenthaler SF, Hartlage-Rübsamen M, Roßner S. Cell Type-Specific Human APP Transgene Expression by Hippocampal Interneurons in the Tg2576 Mouse Model of Alzheimer's Disease. Front Neurosci 2019; 13:137. [PMID: 30853883 PMCID: PMC6395433 DOI: 10.3389/fnins.2019.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 01/21/2023] Open
Abstract
Amyloid precursor protein (APP) transgenic animal models of Alzheimer’s disease have become versatile tools for basic and translational research. However, there is great heterogeneity of histological, biochemical, and functional data between transgenic mouse lines, which might be due to different transgene expression patterns. Here, the expression of human APP (hAPP) by GABAergic hippocampal interneurons immunoreactive for the calcium binding proteins parvalbumin, calbindin, calretinin, and for the peptide hormone somatostatin was analyzed in Tg2576 mice by double immunofluorescent microscopy. Overall, there was no GABAergic interneuron subpopulation that did not express the transgene. On the other hand, in no case all neurons of such a subpopulation expressed hAPP. In dentate gyrus molecular layer and in stratum lacunosum moleculare less than 10% of hAPP-positive interneurons co-express any of these interneuron markers, whereas in stratum oriens hAPP-expressing neurons frequently co-express these interneuron markers to different proportions. We conclude that these neurons differentially contribute to deficits in young Tg2576 mice before the onset of Abeta plaque pathology. The detailed analysis of distinct brain region and neuron type-specific APP transgene expression patterns is indispensable to understand particular pathological features and mouse line-specific differences in neuronal and systemic functions.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul-Flechsig-Institute for Brain Research, Leipzig University, Leipzig, Germany
| | - Emira Shehabi
- Paul-Flechsig-Institute for Brain Research, Leipzig University, Leipzig, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | | - Steffen Roßner
- Paul-Flechsig-Institute for Brain Research, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry 2018; 84:478-487. [PMID: 29945719 DOI: 10.1016/j.biopsych.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-β peptide (Aβ) is thought to be the initial causative factor for Alzheimer's disease. Aβ is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aβ. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aβ concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.
Collapse
|
9
|
Woodhouse A, Fernandez-Martos CM, Atkinson RAK, Hanson KA, Collins JM, O'Mara AR, Terblanche N, Skinner MW, Vickers JC, King AE. Repeat propofol anesthesia does not exacerbate plaque deposition or synapse loss in APP/PS1 Alzheimer's disease mice. BMC Anesthesiol 2018; 18:47. [PMID: 29699479 PMCID: PMC5921792 DOI: 10.1186/s12871-018-0509-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background There is increasing interest in whether anesthetic agents affect the risk or progression of Alzheimer’s disease (AD). To mitigate many of the methodological issues encountered in human retrospective cohort studies we have used a transgenic model of AD to investigate the effect of propofol on AD pathology. Methods Six month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic AD mice and control mice were exposed to 3 doses of propofol (200 mg/kg) or vehicle, delivered at monthly intervals. Results There was no difference in the extent of β-amyloid (Aβ) immunolabeled plaque deposition in APP/PS1 mice in vehicle versus propofol treatment groups. We also detected no difference in plaque-associated synapse loss in APP/PS1 mice following repeat propofol exposure relative to vehicle. Western blotting indicated that there was no difference in post-synaptic density protein 95, synaptophysin or glutamic acid decarboxylase 65/67 expression in control or APP/PS1 mice subjected to repeat propofol treatment relative to vehicle. Conclusions These data suggest that repeat propofol anesthesia may not exacerbate plaque deposition or associated synapse loss in AD. Interestingly, this data also provides some of the first evidence suggesting that repeat propofol exposure in adult wild-type mice does not result in robust long-term alterations in the levels of key excitatory and inhibitory synaptic markers. Electronic supplementary material The online version of this article (10.1186/s12871-018-0509-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adele Woodhouse
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia.
| | | | | | - Kelsey Anne Hanson
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Jessica Marie Collins
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Aidan Ryan O'Mara
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Nico Terblanche
- Tasmanian Health Service, Royal Hobart Hospital, Hobart, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Marcus Welby Skinner
- Department of Health and Human Services Tasmania, Royal Hobart Hospital, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - James Clement Vickers
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Anna Elizabeth King
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| |
Collapse
|
10
|
Liu P, Reichl JH, Rao ER, McNellis BM, Huang ES, Hemmy LS, Forster CL, Kuskowski MA, Borchelt DR, Vassar R, Ashe KH, Zahs KR. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice. J Alzheimers Dis 2018; 56:743-761. [PMID: 28059792 DOI: 10.3233/jad-161027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There exist several dozen lines of transgenic mice that express human amyloid-β protein precursor (AβPP) with Alzheimer's disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - John H Reichl
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - Eshaan R Rao
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Brittany M McNellis
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Eric S Huang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - Laura S Hemmy
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.,GRECC, VA Medical Center, Minneapolis, MN, USA
| | - Colleen L Forster
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,UMN Academic Health Center Biological Materials Procurement Network, University of Minnesota, Minneapolis, MN, USA
| | | | - David R Borchelt
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Robert Vassar
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,GRECC, VA Medical Center, Minneapolis, MN, USA
| | - Kathleen R Zahs
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Stuart KE, King AE, Fernandez-Martos CM, Dittmann J, Summers MJ, Vickers JC. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J Comp Neurol 2017; 525:1797-1810. [DOI: 10.1002/cne.24156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Kimberley E. Stuart
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Anna E. King
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Carmen M. Fernandez-Martos
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Justin Dittmann
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| | - Mathew J. Summers
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
- School of Social Sciences; University of the Sunshine Coast; Sippy Downs Queensland Australia
| | - James C. Vickers
- Faculty of Health; Wicking Dementia Research and Education Centre, University of Tasmania; Tasmania Australia
| |
Collapse
|
12
|
Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, Merchán-Pérez Á, Rodríguez JR, Dorostkar MM, DeFelipe J, Herms J. High plasticity of axonal pathology in Alzheimer's disease mouse models. Acta Neuropathol Commun 2017; 5:14. [PMID: 28173876 PMCID: PMC5296955 DOI: 10.1186/s40478-017-0415-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/26/2017] [Indexed: 02/05/2023] Open
Abstract
Axonal dystrophies (AxDs) are swollen and tortuous neuronal processes that are associated with extracellular depositions of amyloid β (Aβ) and have been observed to contribute to synaptic alterations occurring in Alzheimer's disease. Understanding the temporal course of this axonal pathology is of high relevance to comprehend the progression of the disease over time. We performed a long-term in vivo study (up to 210 days of two-photon imaging) with two transgenic mouse models (dE9xGFP-M and APP-PS1xGFP-M). Interestingly, AxDs were formed only in a quarter of GFP-expressing axons near Aβ-plaques, which indicates a selective vulnerability. AxDs, especially those reaching larger sizes, had long lifetimes and appeared as highly plastic structures with large variations in size and shape and axonal sprouting over time. In the case of the APP-PS1 mouse only, the formation of new long axonal segments in dystrophic axons (re-growth phenomenon) was observed. Moreover, new AxDs could appear at the same point of the axon where a previous AxD had been located before disappearance (re-formation phenomenon). In addition, we observed that most AxDs were formed and developed during the imaging period, and numerous AxDs had already disappeared by the end of this time. This work is the first in vivo study analyzing quantitatively the high plasticity of the axonal pathology around Aβ plaques. We hypothesized that a therapeutically early prevention of Aβ plaque formation or their growth might halt disease progression and promote functional axon regeneration and the recovery of neural circuits.
Collapse
|
13
|
Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathol Commun 2017; 5:8. [PMID: 28109312 PMCID: PMC5251221 DOI: 10.1186/s40478-017-0411-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 01/30/2023] Open
Abstract
A major feature of Alzheimer’s disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates during the initial stages of AD is still under investigation. To address this question, we performed tyrosine hydroxylase (TH) immunohistochemistry and unbiased stereology of noradrenergic LC neurons in tissue harvested postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a putative prodromal AD stage), or mild/moderate AD. Stereologic estimates of total LC neuron number revealed a 30% loss during the transition from NCI to aMCI, with an additional 25% loss of LC neurons in AD. Decreases in noradrenergic LC neuron number were significantly associated with worsening antemortem global cognitive function as well as poorer performance on neuropsychological tests of episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability. Reduced LC neuron numbers were also associated with increased postmortem neuropathology. To examine the cellular and molecular pathogenic processes underlying LC neurodegeneration in aMCI, we performed single population microarray analysis. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial respiration, redox homeostasis, and neuritic structural plasticity in neurons accessed from both aMCI and AD subjects compared to NCI. Specific gene expression levels within these functional classes were also associated with global cognitive deterioration and neuropathological burden. Taken together, these observations suggest that noradrenergic LC cellular and molecular pathology is a prominent feature of prodromal disease that contributes to cognitive dysfunction. Moreover, they lend support to a rational basis for targeting LC neuroprotection as a disease modifying strategy.
Collapse
|
14
|
Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:92-106. [PMID: 29067321 PMCID: PMC5651376 DOI: 10.1016/j.trci.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Combination therapy approaches may be necessary to address the many facets of pathologic change in the brain in Alzheimer's disease (AD). The drugs leptin and pioglitazone have previously been shown individually to have neuroprotective and anti-inflammatory actions, respectively, in animal models. METHODS We studied the impact of combined leptin and pioglitazone treatment in 6-month-old APP/PS1 (APPswe/PSEN1dE9) transgenic AD mouse model. RESULTS We report that an acute 2-week treatment with combined leptin and pioglitazone resulted in a reduction of spatial memory deficits (Y maze) and brain β-amyloid levels (soluble β-amyloid and amyloid plaque burden) relative to vehicle-treated animals. Combination treatment was also associated with amelioration in plaque-associated neuritic pathology and synapse loss, and also a significantly reduced neocortical glial response. DISCUSSION Combination therapy with leptin and pioglitazone ameliorates pathologic changes in APP/PS1 mice and may represent a potential treatment approach for AD.
Collapse
Affiliation(s)
- Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Meng I Chuah
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
15
|
Vickers JC, Mitew S, Woodhouse A, Fernandez-Martos CM, Kirkcaldie MT, Canty AJ, McCormack GH, King AE. Defining the earliest pathological changes of Alzheimer's disease. Curr Alzheimer Res 2016; 13:281-7. [PMID: 26679855 PMCID: PMC4917817 DOI: 10.2174/1567205013666151218150322] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/12/2015] [Indexed: 11/22/2022]
Abstract
The prospects for effectively treating well-established dementia, such as Alzheimer's disease (AD), are slim, due to the destruction of key brain pathways that underlie higher cognitive function. There has been a substantial shift in the field towards detecting conditions such as AD in their earliest stages, which would allow preventative or therapeutic approaches to substantially reduce risk and/or slow the progression of disease. AD is characterized by hallmark pathological changes such as extracellular Aβ plaques and intracellular neurofibrillary pathology, which selectively affect specific subclasses of neurons and brain circuits. Current evidence indicates that Aβ plaques begin to form many years before overt dementia, a gradual and progressive pathology which offers a potential target for early intervention. Early Aβ changes in the brain result in localized damage to dendrites, axonal processes and synapses, to which excitatory synapses and the processes of projection neurons are highly vulnerable. Aβ pathology is replicated in a range of transgenic models overexpressing mutant human familial AD genes (e.g. APP and presenilin 1). Studying the development of aberrant regenerative and degenerative changes in neuritic processes associated with Aβ plaques may represent the best opportunity to understand the relationship between the pathological hallmarks of AD and neuronal damage, and to develop early interventions to prevent, slow down or mitigate against Aβ pathology and/or the neuronal alterations that leads to cognitive impairment.
Collapse
Affiliation(s)
- James C Vickers
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Neurofilament-labeled pyramidal neurons and astrocytes are deficient in DNA methylation marks in Alzheimer's disease. Neurobiol Aging 2016; 45:30-42. [DOI: 10.1016/j.neurobiolaging.2016.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
|
17
|
Vickers J, Kirkcaldie M, Phipps A, King A. Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull 2016; 126:324-333. [DOI: 10.1016/j.brainresbull.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023]
|
18
|
Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer's disease. Neurobiol Aging 2015; 36:2757-67. [DOI: 10.1016/j.neurobiolaging.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023]
|