1
|
Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased Central Auditory Gain and Decreased Parvalbumin-Positive Cortical Interneuron Density in the Df1/+ Mouse Model of Schizophrenia Correlate With Hearing Impairment. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:386-397. [PMID: 37519460 PMCID: PMC10382707 DOI: 10.1016/j.bpsgos.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.
Collapse
Affiliation(s)
- Fhatarah A. Zinnamon
- Ear Institute, University College London, London, United Kingdom
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Freya G. Harrison
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Sandra S. Wenas
- Ear Institute, University College London, London, United Kingdom
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Jennifer F. Linden
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Wilson P, Apawu AK. Deafening noise down-regulates dopamine transmission in the hub of the central auditory system. Neurochem Int 2022; 159:105382. [DOI: 10.1016/j.neuint.2022.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
3
|
Harris S, Afram R, Shimano T, Fyk-Kolodziej B, Walker PD, Braun RD, Holt AG. Dopamine in Auditory Nuclei and Lemniscal Projections is Poised to Influence Acoustic Integration in the Inferior Colliculus. Front Neural Circuits 2021; 15:624563. [PMID: 33746717 PMCID: PMC7973212 DOI: 10.3389/fncir.2021.624563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) modulates the activity of nuclei within the ascending and descending auditory pathway. Previous studies have identified neurons and fibers in the inferior colliculus (IC) which are positively labeled for tyrosine hydroxylase (TH), a key enzyme in the synthesis of dopamine. However, the origins of the tyrosine hydroxylase positive projections to the inferior colliculus have not been fully explored. The lateral lemniscus (LL) provides a robust inhibitory projection to the inferior colliculus and plays a role in the temporal processing of sound. In the present study, immunoreactivity for tyrosine hydroxylase was examined in animals with and without 6-hydroxydopamine (6-OHDA) lesions. Lesioning, with 6-OHDA placed in the inferior colliculus, led to a significant reduction in tyrosine hydroxylase immuno-positive labeling in the lateral lemniscus and inferior colliculus. Immunolabeling for dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT), enzymes responsible for the synthesis of norepinephrine (NE) and epinephrine (E), respectively, were evaluated. Very little immunoreactivity for DBH and no immunoreactivity for PNMT was found within the cell bodies of the dorsal, intermediate, or ventral nucleus of the lateral lemniscus. The results indicate that catecholaminergic neurons of the lateral lemniscus are likely dopaminergic and not noradrenergic or adrenergic. Next, high-pressure liquid chromatography (HPLC) analysis was used to confirm that dopamine is present in the inferior colliculus and nuclei that send projections to the inferior colliculus, including the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus, and auditory cortex (AC). Finally, fluorogold, a retrograde tracer, was injected into the inferior colliculus of adult rats. Each subdivision of the lateral lemniscus contained fluorogold within the somata, with the dorsal nucleus of the lateral lemniscus showing the most robust projections to the inferior colliculus. Fluorogold-tyrosine hydroxylase colocalization within the lateral lemniscus was assessed. The dorsal and intermediate nuclei neurons exhibiting similar degrees of colocalization, while neurons of the ventral nucleus had significantly fewer colocalized fluorogold-tyrosine hydroxylase labeled neurons. These results suggest that several auditory nuclei that project to the inferior colliculus contain dopamine, dopaminergic neurons in the lateral lemniscus project to the inferior colliculus and that dopaminergic neurotransmission is poised to play a pivotal role in the function of the inferior colliculus.
Collapse
Affiliation(s)
- Sharonda Harris
- Department of Pharmacology and Therapeutics, University of Florida School of Medicine, Gainesville, FL, United States
| | - Renee Afram
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bozena Fyk-Kolodziej
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Paul D. Walker
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rod D. Braun
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Avril Genene Holt
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
4
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Kühl A, Dixon A, Hali M, Apawu AK, Muca A, Sinan M, Warila J, Braun RD, Berkowitz BA, Holt AG. Novel QUEST MRI In Vivo Measurement of Noise-induced Oxidative Stress in the Cochlea. Sci Rep 2019; 9:16265. [PMID: 31700007 PMCID: PMC6838338 DOI: 10.1038/s41598-019-52439-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023] Open
Abstract
Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.
Collapse
Affiliation(s)
- André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Angela Dixon
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mirabela Hali
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aaron K Apawu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Antonela Muca
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Moaz Sinan
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Warila
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
- John D. Dingell Veteran Affairs Medical Center, Detroit, Michigan, USA.
| |
Collapse
|
6
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Dopamine Acts via D2-Like Receptors to Modulate Auditory Responses in the Inferior Colliculus. eNeuro 2019; 6:ENEURO.0350-19.2019. [PMID: 31548368 PMCID: PMC6791829 DOI: 10.1523/eneuro.0350-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
The ability to understand speech relies on accurate auditory processing of complex sounds. Individuals with Parkinson's disease suffer from speech perception deficits, suggesting that dopamine is involved in the encoding of complex sounds. Recent studies have demonstrated that dopamine has heterogeneous effects on the responses of many neurons in the inferior colliculus (IC) of mice, although the strongest effect is to suppress neural activity. However, it was previously unknown which dopamine receptors are involved in modulating neuronal responses, and whether the observed preponderance of depressive effects reflects the endogenous dopamine system in the IC. In this study, we tested whether dopamine acts via D1- and/or D2-like receptors to alter responses of IC neurons in female and male mice. We also tested the effect of optogenetically induced dopamine release on auditory responses in the IC. We found that the effects of dopamine in the IC occur via D2-like receptors. In iontophoretic and freely behaving experiments, the single-unit and multi-unit effects of dopamine and a D2-like agonist were heterogeneous as both either increased or decreased responses of IC neurons to tones, while a D2-like antagonist had opposite effects. We also found that optogenetic activation of the endogenous dopamine system in the IC alters responses of auditory neurons. Similar to the effects of exogenous dopamine application, optogenetic induction of endogenous dopamine release heterogeneously altered auditory responses in the majority of cells in mice expressing channelrhodopsin-2 (ChR2). Understanding how dopamine modulates auditory processing will ultimately inform therapies targeting mechanisms underlying auditory-related communication disorders.
Collapse
|
8
|
Mansour Y, Mangold S, Chosky D, Kulesza RJ. Auditory Midbrain Hypoplasia and Dysmorphology after Prenatal Valproic Acid Exposure. Neuroscience 2019; 396:79-93. [DOI: 10.1016/j.neuroscience.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/01/2022]
|
9
|
Sabiha B, Ali J, Yousafzai YM, Haider SA. Novel deleterious mutation in MYO7A, TH and EVC2 in two Pakistani brothers with familial deafness. Pak J Med Sci 2018; 35:17-22. [PMID: 30881389 PMCID: PMC6408642 DOI: 10.12669/pjms.35.1.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective In Pakistan, 74% of consanguineous marriages are among the first cousins. Continuity of consanguineous marriages over generations increases the risk of recessive diseases such as deafness. The objective of this study was to investigate genetic origin of Pakistani deaf brothers with parents of consanguineous marriage. Methods DNA was extracted from the blood through Qiagen kit. Paired-end sequencing library was prepared according to protocol of Illumina's TruSight Rapid Capture kit and TruSight Inherited Disease Panel. Library was normalized and used for Next Generation Sequencing through MiSeq. NGS data were analyzed using various bioinformatics tools. Results Both brothers were found to have novel deleterious mutation in MYO7A (c.2476G>A) while the younger brother had additional novel deleterious mutation in TH (c.43C>T) and EVC2 (c.2614C>T) genes. Conclusion It is concluded that in addition to novel mutations in MYO7A, TH and EVC2, the CDH23 and GJB2 can also be responsible for deafness in the family with consanguineous marriages.
Collapse
Affiliation(s)
- Bibi Sabiha
- Bibi Sabiha, Center for Genomic Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, KP, Pakistan
| | - Johar Ali
- Johar Ali, Center for Genomic Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, KP, Pakistan
| | - Yasar Mehmood Yousafzai
- Yasar Mehmood Yousafzai, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Syed Adnan Haider
- Syed Adnan Haider, Center for Genomic Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, KP, Pakistan
| |
Collapse
|
10
|
Batton AD, Blaha CD, Bieber A, Lee KH, Boschen SL. Stimulation of the subparafascicular thalamic nucleus modulates dopamine release in the inferior colliculus of rats. Synapse 2018; 73:e22073. [PMID: 30291737 DOI: 10.1002/syn.22073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 11/08/2022]
Abstract
Although dopamine is commonly studied for its role in incentive motivation, cognition, and various neuropsychiatric disorders, evidence from Parkinson's disease (PD) patients that present auditory deficits suggest that dopamine is also involved in central auditory processing. It has been recently discovered that the subparafascicular thalamic nucleus (SPF) sends dopaminergic projections to the inferior colliculus (IC), an important convergence hub for the ascending and descending auditory pathways. In the present study, our aim was to provide neurochemical evidence that activation of SPF neurons evokes dopamine release in the IC of anesthetized rats using fast-scan cyclic and paired pulse voltammetry in combination with carbon fiber microelectrodes. Electrical stimulation of the SPF (60 and 90 Hz) evoked dopamine release in the IC in a frequency-dependent manner, with higher frequencies evoking greater amplitude dopamine responses. Optogenetic-evoked dopamine responses were similar to the effects of electrical stimulation suggesting that electrical stimulation-evoked dopamine release was not due to nonspecific activation of fibers of passage, but rather to activation of SPF cells projecting to the IC. Selective dopamine reuptake blockade enhanced the evoked dopamine response, while selective blockade of serotonin did not, confirming the selectivity of the neurochemical recordings to dopamine. Therefore, the SPF neuronal pathway functionally mediates dopamine release in the IC and thus may be involved in auditory processing deficits associated with PD.
Collapse
Affiliation(s)
- Aiyana D Batton
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Allan Bieber
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Suelen L Boschen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Repeated Prenatal Exposure to Valproic Acid Results in Auditory Brainstem Hypoplasia and Reduced Calcium Binding Protein Immunolabeling. Neuroscience 2018; 377:53-68. [DOI: 10.1016/j.neuroscience.2018.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Accepted: 02/25/2018] [Indexed: 01/01/2023]
|
12
|
Ghirardini E, Wadle SL, Augustin V, Becker J, Brill S, Hammerich J, Seifert G, Stephan J. Expression of functional inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 by astrocytes of inferior colliculus and hippocampus. Mol Brain 2018; 11:4. [PMID: 29370841 PMCID: PMC5785846 DOI: 10.1186/s13041-018-0346-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs). Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we could show that the capacity for glycine and GABA uptake varies between both brain regions.
Collapse
Affiliation(s)
- Elsa Ghirardini
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany.,Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, I-20129, Milan, Italy.,Pharmacology and Brain Pathology Lab, Humanitas Clinical and Research Center, via Manzoni 56, I-20089, Rozzano, Italy
| | - Simon L Wadle
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Vanessa Augustin
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Jasmin Becker
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Sina Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Julia Hammerich
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, D-53105, Bonn, Germany
| | - Jonathan Stephan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
13
|
Yamamoto Y, Nakamuta N. Morphology of P2X3-immunoreactive nerve endings in the rat tracheal mucosa. J Comp Neurol 2017; 526:550-566. [PMID: 29124772 DOI: 10.1002/cne.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Nerve endings with immunoreactivity for the P2X3 purinoreceptor (P2X3) in the rat tracheal mucosa were examined by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3 immunoreactivity was observed in ramified endings distributed in the whole length of the trachea. The myelinated parent axons of P2X3-immunoreactive nerve endings ramified into several branches that extended two-dimensionally in every direction at the interface between the epithelial layer and lamina propria. The axonal branches of P2X3-immunoreactive endings branched off many twigs located just beneath the epithelium, and continued to intraepithelial axon terminals. The axon terminals of P2X3-immunoreactive endings were beaded, rounded, or club-like in shape and terminated between tracheal epithelial cells. Flat axon terminals sometimes partly ensheathed neuroendocrine cells with immunoreactivity for SNAP25 or CGRP. Some axons and axon terminals with P2X3 immunoreactivity were immunoreactive for P2X2, while some terminals were immunoreactive for vGLUT2. Furthermore, a retrograde tracing method using fast blue (FB) revealed that 88.4% of FB-labeled cells with P2X3 immunoreactivity originated from the nodose ganglion. In conclusion, P2X3-immunoreactive nerve endings in the rat tracheal mucosa have unique morphological characteristics, and these endings may be rapidly adapting receptors and/or irritant receptors that are activated by mucosal irritant stimuli.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
14
|
Fujimoto H, Konno K, Watanabe M, Jinno S. Late postnatal shifts of parvalbumin and nitric oxide synthase expression within the GABAergic and glutamatergic phenotypes of inferior colliculus neurons. J Comp Neurol 2016; 525:868-884. [PMID: 27560447 DOI: 10.1002/cne.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Abstract
The inferior colliculus (IC) is partitioned into three subdivisions: the dorsal and lateral cortices (DC and LC) and the central nucleus (ICC), and serves as an integration center of auditory information. Recent studies indicate that a certain population of IC neurons may represent the non-GABAergic phenotype, while they express well-established cortical/hippocampal GABAergic neuron markers. In this study we used the optical disector to investigate the phenotype of IC neurons expressing parvalbumin (PV) and/or nitric oxide synthase (NOS) in C57BL/6J mice during the late postnatal period. Four major types of IC neurons were defined by the presence (+) or absence (-) of PV, NOS, and glutamic acid decarboxylase 67 (GAD67): PV+ /NOS- /GAD67+ , PV+ /NOS+ /GAD67+ , PV+ /NOS- /GAD67- , and PV- /NOS+ /GAD67- . Fluorescent in situ hybridization for vesicular glutamate transporter 2 mRNA indicated that almost all GAD67- IC neurons represented the glutamatergic phenotype. The numerical densities (NDs) of total GAD67+ IC neurons remained unchanged in all subdivisions. The NDs of PV+ /NOS- /GAD67+ neurons and PV- /NOS+ /GAD67- neurons were reduced with age in the ICC, while they remained unchanged in the DC and LC. By contrast, the NDs of PV+ /NOS+ /GAD67+ neurons and PV+ /NOS- /GAD67- neurons were increased with age in the ICC, although there were no changes in the DC and LC. The cell body size of GAD67+ IC neurons did not vary according to the expression of PV with or without NOS. The present findings indicate that the expression of PV and NOS may shift with age within the GABAergic and glutamatergic phenotypes of IC neurons during the late postnatal period. J. Comp. Neurol. 525:868-884, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kotaro Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|