1
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. J Comp Neurol 2024; 532:e25629. [PMID: 39031887 PMCID: PMC11819615 DOI: 10.1002/cne.25629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
2
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
3
|
Nardone S, De Luca R, Zito A, Klymko N, Nicoloutsopoulos D, Amsalem O, Brannigan C, Resch JM, Jacobs CL, Pant D, Veregge M, Srinivasan H, Grippo RM, Yang Z, Zeidel ML, Andermann ML, Harris KD, Tsai LT, Arrigoni E, Verstegen AMJ, Saper CB, Lowell BB. A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution. Nat Commun 2024; 15:1966. [PMID: 38438345 PMCID: PMC10912765 DOI: 10.1038/s41467-024-45907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.
Collapse
Affiliation(s)
- Stefano Nardone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Antonino Zito
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nataliya Klymko
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | | | - Oren Amsalem
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Cory Brannigan
- HEAVY.AI, 100 Montgomery St Fl 5, San Francisco, California, 94104, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center. University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Christopher L Jacobs
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepti Pant
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Molly Veregge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Harini Srinivasan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan M Grippo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Zongfang Yang
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Mark L Andermann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Linus T Tsai
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anne M J Verstegen
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Xing L, Zou X, Yin C, Webb JM, Shi G, Ptáček LJ, Fu YH. Diverse roles of pontine NPS-expressing neurons in sleep regulation. Proc Natl Acad Sci U S A 2024; 121:e2320276121. [PMID: 38381789 PMCID: PMC10907243 DOI: 10.1073/pnas.2320276121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.
Collapse
Affiliation(s)
- Lijuan Xing
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - Xianlin Zou
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - Chen Yin
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - John M. Webb
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
| | - Guangsen Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan528400, China
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA94143
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA94143
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, CA94143
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA94143
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
5
|
Angelakos CC, Girven KS, Liu Y, Gonzalez OC, Murphy KR, Jennings KJ, Giardino WJ, Zweifel LS, Suko A, Palmiter RD, Clark SD, Krasnow MA, Bruchas MR, de Lecea L. A cluster of neuropeptide S neurons regulates breathing and arousal. Curr Biol 2023; 33:5439-5455.e7. [PMID: 38056461 PMCID: PMC10842921 DOI: 10.1016/j.cub.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.
Collapse
Affiliation(s)
- Christopher Caleb Angelakos
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yin Liu
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Oscar C Gonzalez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kim J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mark A Krasnow
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Nardone S, De Luca R, Zito A, Klymko N, Nicoloutsopoulos D, Amsalem O, Brannigan C, Resch JM, Jacobs CL, Pant D, Veregge M, Srinivasan H, Grippo RM, Yang Z, Zeidel ML, Andermann ML, Harris KD, Tsai LT, Arrigoni E, Verstegen AMJ, Saper CB, Lowell BB. A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558047. [PMID: 38014113 PMCID: PMC10680649 DOI: 10.1101/2023.09.18.558047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed many neuronal subtypes' unique marker genes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.
Collapse
Affiliation(s)
- Stefano Nardone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Antonino Zito
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Nataliya Klymko
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | | | - Oren Amsalem
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Cory Brannigan
- HEAVY.AI, 100 Montgomery St Fl 5, San Francisco, California, 94104, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center. University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Christopher L Jacobs
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepti Pant
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Molly Veregge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Harini Srinivasan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan M Grippo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Zongfang Yang
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Mark L Andermann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Linus T Tsai
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anne M J Verstegen
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Huang D, Zhang R, Gasparini S, McDonough MC, Paradee WJ, Geerling JC. Neuropeptide S (NPS) neurons: Parabrachial identity and novel distributions. J Comp Neurol 2022; 530:3157-3178. [PMID: 36036349 PMCID: PMC9588594 DOI: 10.1002/cne.25400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023]
Abstract
Neuropeptide S (NPS) increases wakefulness. A small number of neurons in the brainstem express Nps. These neurons are located in or near the parabrachial nucleus (PB), but we know very little about their ontogeny, connectivity, and function. To identify Nps-expressing neurons within the molecular framework of the PB region, we used in situ hybridization, immunofluorescence, and Cre-reporter labeling in mice. The primary concentration of Nps-expressing neurons borders the lateral lemniscus at far-rostral levels of the lateral PB. Caudal to this main cluster, Nps-expressing neurons scatter through the PB and form a secondary concentration medial to the locus coeruleus (LC). Most Nps-expressing neurons in the PB region are Atoh1-derived, Foxp2-expressing, and mutually exclusive with neurons expressing Calca or Lmx1b. Among Foxp2-expressing PB neurons, those expressing Nps are distinct from intermingled subsets expressing Cck or Pdyn. Examining Nps Cre-reporter expression throughout the brain identified novel populations of neurons in the nucleus incertus, anterior hypothalamus, and lateral habenula. This information will help focus experimental questions about the connectivity and function of NPS neurons.
Collapse
Affiliation(s)
- Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowa
| | - Richie Zhang
- Department of NeurologyUniversity of IowaIowa CityIowa
| | | | | | | | | |
Collapse
|
8
|
Li C, Wu XJ, Li W. Neuropeptide S promotes maintenance of newly formed dendritic spines and performance improvement after motor learning in mice. Peptides 2022; 156:170860. [PMID: 35970276 DOI: 10.1016/j.peptides.2022.170860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Neuropeptide S (NPS), an endogenous neuropeptide consisting of 20 amino acids, selectively binds and activates G protein-coupled receptor named neuropeptide S receptor (NPSR) to regulate a variety of physiological functions. NPS/NPSR system has been shown to play a pivotal role in regulating learning and memory in rodents. However, it remains unclear that how NPS/NPSR system affects neuronal functions and synaptic plasticity after learning. We found that intracerebroventricular (i.c.v.) injection of NPS promoted performance improvement and reduced sleep duration after motor learning, which could be blocked by pre-treatment with intraperitoneal (i.p.) injection of NPSR antagonist SHA 68. Using intravital two-photon imaging, we examined the effect of NPS on the postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex after motor learning. We found that i.c.v. injection of NPS strengthened learning-induce new spines and facilitated their survival over time. Furthermore, i.c.v. injection of NPS increased calcium activity of apical dendrites and dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex during the running period. These findings suggest that activation of NPSR by NPS increases synaptic calcium activity and learning-related synapse maintenance, thereby contributing to performance improvement after motor learning.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu-Jun Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
9
|
Markiewicz-Gospodarek A, Markiewicz R, Dobrowolska B, Rahnama M, Łoza B. Relationship of Neuropeptide S (NPS) with Neurocognitive, Clinical, and Electrophysiological Parameters of Patients during Structured Rehabilitation Therapy for Schizophrenia. J Clin Med 2022; 11:jcm11185266. [PMID: 36142912 PMCID: PMC9506378 DOI: 10.3390/jcm11185266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Neuropeptide S is a biomarker related to various neuropsychiatric and neurocognitive functions. Since the need to improve cognitive functions in schizophrenia is unquestionable, it was valuable to investigate the possible relationships of plasma levels of NPS with neurocognitive, psychopathological and EEG parameters in patients with schizophrenia. Aim: Relationships between the serum NPS level and neurocognitive, clinical, and electrophysiological parameters were investigated in patients diagnosed with schizophrenia who underwent structured rehabilitation therapy. Methods: Thirty-three men diagnosed with schizophrenia were randomized into two groups. The REH group (N16) consisted of patients who underwent structured rehabilitation therapy, the CON group (N17) continued its previous treatment. Additionally, the reference NPS serum results were checked in a group of healthy people (N15). In the study several tests assessing various neurocognitive functions were used: d2 Sustained-Attention Test (d2), Color Trails Test (CTT), Beck Cognitive Insight Scale (BCIS), Acceptance of Illness Scale (AIS), and General Self-Efficacy Scale (GSES). The clinical parameters were measured with Positive and Negative Syndrome Scale (PANSS) and electrophysiological parameters were analyzed with auditory evoked potentials (AEPs) and quantitative electroencephalography (QEEG). The NPS, neurocognitive, clinical, and electrophysiological results of REH and CON groups were recorded at the beginning (T1) and after a period of 3 months (T2). Results: A decreased level of NPS was associated with the improvement in specific complex indices of d2 and BCIS neurocognitive tests, as well as the improvement in the clinical state (PANSS). No correlation was observed between the level of NPS and the results of AEPs and QEEG measurements. Conclusions: A decreased level of NPS is possibly related to the improvement in metacognition and social cognition domains, as well as to clinical improvement during the rehabilitation therapy of patients with schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Mansur Rahnama
- Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
10
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
11
|
Relationship of Neuropeptide S with Clinical and Metabolic Parameters of Patients during Rehabilitation Therapy for Schizophrenia. Brain Sci 2022; 12:768. [PMID: 35741653 PMCID: PMC9221542 DOI: 10.3390/brainsci12060768&set/a 869781119+878628306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Neuropeptide S (NPS) is a factor associated with the central regulation of body weight, stress, anxiety, learning, memory consolidation, wakefulness-sleep cycle, and anti-inflammatory and neuroplastic effects. Its stress-reducing, anti-anxiety, arousal without anxiety, and pro-cognitive effects represent an interesting option for the treatment of neuropsychiatric disorders. The purpose of the study was to examine the potential associations of NPS levels in the blood with clinical and metabolic parameters during the rehabilitation therapy of patients with schizophrenia. Thirty-three male subjects diagnosed with schizophrenia were randomly divided into two groups. The rehabilitation group (REH, N16) consisted of patients who were subjected to structured, 3-month intensive rehabilitation therapy, and the control group (CON, N17) consisted of patients who were subjected to a standard support mechanism. Both groups continued their pharmacological treatment as usual. The NPS concentration, as well as clinical and metabolic parameters, were compared in both groups. Additionally, a group of healthy (H) males (N15) was tested for NPS reference scores. To look for the specificity and selectivity of the NPS relationship with clinical results, various factor models of the positive and negative syndrome scale (PANSS) were analyzed, including the original PANSS 2/3 model, its modified four-factor version, the male-specific four-factor model, and two five-factorial models validated in large groups in clinical and multi-ethnic studies. Results and conclusions: (1) Structured rehabilitation therapy, compared to unstructured supportive therapy, significantly reduced the level of schizophrenia disorders defined by various factor models derived from PANSS. (2) The clinical improvement within the 3-month rehabilitation therapy course was correlated with a significant decrease in neuropeptide S (NPS) serum level. (3) The excitement/Hostility (E/H) factor, which included schizophrenic symptoms of the psychotic disorganization, was specific and selective for the reduction in serum NPS, which was stable across all analyzed factor models. (4) The long-term relationship between serum NPS and clinical factors was not accompanied by basic metabolic parameters.
Collapse
|
12
|
Piwowarczyk-Nowak A, Pałasz A, Bogus K, Krzystanek M, Błaszczyk I, Worthington JJ, Grajoszek A. Modulatory effect of long-term treatment with escitalopram and clonazepam on the expression of anxiety-related neuropeptides: neuromedin U, neuropeptide S and their receptors in the rat brain. Mol Biol Rep 2022; 49:9041-9049. [PMID: 35690686 DOI: 10.1007/s11033-022-07578-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Newly identified multifunctional peptidergic modulators of stress responses: neuromedin U (NMU) and neuropeptide S (NPS) are involved in the wide spectrum of brain functions. However, there are no reports dealing with potential molecular relationships between the action of diverse anxiolytic or antidepressant drugs and NMU and NPS signaling in the brain. The present work was therefore focused on local expression of the aforementioned stress-related neuropeptides in the rat brain after long-term treatment with escitalopram and clonazepam. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into 3 groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 5 mg/kg daily), and clonazepam (at single dose 0.5 mg/kg). All individuals were sacrificed under anaesthesia and the whole brain excised. Total mRNA was isolated from homogenized samples of amygdala, hippocampus, hypothalamus, thalamus, cerebellum and brainstem. Real time-PCR method was used for estimation of related NPS, NPS receptor (NPSR), NMU, NMU and receptor 2 (NMUR2) mRNA expression. The whole brains were also sliced for general immunohistochemical assessment of the neuropeptides expression. RESULTS Chronic administration of clonazepam resulted in an increase of NMU mRNA expression and formation of NMU-expressing fibers in the amygdala, while escitalopram produced a significant decrease in NPSR mRNA level in hypothalamus. Long-term escitalopram administration affects the local expression of examined neuropeptides mRNA in a varied manner depending on the brain structure. CONCLUSIONS Pharmacological effects of escitalopram may be connected with local at least partially NPSR-related alterations in the NPS/NMU/NMUR2 gene expression at the level selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziolowa 45/47 Katowice 40- 635, Katowice, Poland
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, Lancaster, UK
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| |
Collapse
|
13
|
Relationship of Neuropeptide S with Clinical and Metabolic Parameters of Patients during Rehabilitation Therapy for Schizophrenia. Brain Sci 2022. [DOI: 10.3390/brainsci12060768
expr 958893762 + 814326274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Neuropeptide S (NPS) is a factor associated with the central regulation of body weight, stress, anxiety, learning, memory consolidation, wakefulness–sleep cycle, and anti-inflammatory and neuroplastic effects. Its stress-reducing, anti-anxiety, arousal without anxiety, and pro-cognitive effects represent an interesting option for the treatment of neuropsychiatric disorders. The purpose of the study was to examine the potential associations of NPS levels in the blood with clinical and metabolic parameters during the rehabilitation therapy of patients with schizophrenia. Thirty-three male subjects diagnosed with schizophrenia were randomly divided into two groups. The rehabilitation group (REH, N16) consisted of patients who were subjected to structured, 3-month intensive rehabilitation therapy, and the control group (CON, N17) consisted of patients who were subjected to a standard support mechanism. Both groups continued their pharmacological treatment as usual. The NPS concentration, as well as clinical and metabolic parameters, were compared in both groups. Additionally, a group of healthy (H) males (N15) was tested for NPS reference scores. To look for the specificity and selectivity of the NPS relationship with clinical results, various factor models of the positive and negative syndrome scale (PANSS) were analyzed, including the original PANSS 2/3 model, its modified four-factor version, the male-specific four-factor model, and two five-factorial models validated in large groups in clinical and multi-ethnic studies. Results and conclusions: (1) Structured rehabilitation therapy, compared to unstructured supportive therapy, significantly reduced the level of schizophrenia disorders defined by various factor models derived from PANSS. (2) The clinical improvement within the 3-month rehabilitation therapy course was correlated with a significant decrease in neuropeptide S (NPS) serum level. (3) The excitement/Hostility (E/H) factor, which included schizophrenic symptoms of the psychotic disorganization, was specific and selective for the reduction in serum NPS, which was stable across all analyzed factor models. (4) The long-term relationship between serum NPS and clinical factors was not accompanied by basic metabolic parameters.
Collapse
|
14
|
Relationship of Neuropeptide S with Clinical and Metabolic Parameters of Patients during Rehabilitation Therapy for Schizophrenia. Brain Sci 2022; 12:brainsci12060768. [PMID: 35741653 PMCID: PMC9221542 DOI: 10.3390/brainsci12060768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/09/2023] Open
Abstract
Neuropeptide S (NPS) is a factor associated with the central regulation of body weight, stress, anxiety, learning, memory consolidation, wakefulness–sleep cycle, and anti-inflammatory and neuroplastic effects. Its stress-reducing, anti-anxiety, arousal without anxiety, and pro-cognitive effects represent an interesting option for the treatment of neuropsychiatric disorders. The purpose of the study was to examine the potential associations of NPS levels in the blood with clinical and metabolic parameters during the rehabilitation therapy of patients with schizophrenia. Thirty-three male subjects diagnosed with schizophrenia were randomly divided into two groups. The rehabilitation group (REH, N16) consisted of patients who were subjected to structured, 3-month intensive rehabilitation therapy, and the control group (CON, N17) consisted of patients who were subjected to a standard support mechanism. Both groups continued their pharmacological treatment as usual. The NPS concentration, as well as clinical and metabolic parameters, were compared in both groups. Additionally, a group of healthy (H) males (N15) was tested for NPS reference scores. To look for the specificity and selectivity of the NPS relationship with clinical results, various factor models of the positive and negative syndrome scale (PANSS) were analyzed, including the original PANSS 2/3 model, its modified four-factor version, the male-specific four-factor model, and two five-factorial models validated in large groups in clinical and multi-ethnic studies. Results and conclusions: (1) Structured rehabilitation therapy, compared to unstructured supportive therapy, significantly reduced the level of schizophrenia disorders defined by various factor models derived from PANSS. (2) The clinical improvement within the 3-month rehabilitation therapy course was correlated with a significant decrease in neuropeptide S (NPS) serum level. (3) The excitement/Hostility (E/H) factor, which included schizophrenic symptoms of the psychotic disorganization, was specific and selective for the reduction in serum NPS, which was stable across all analyzed factor models. (4) The long-term relationship between serum NPS and clinical factors was not accompanied by basic metabolic parameters.
Collapse
|
15
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022; 74:637-653. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. RESULTS Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. CONCLUSIONS The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Clinic of Psychiatric Rehabilitation, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
16
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Błaszczyk I, Bogus K, Łasut-Szyszka B, Krzystanek M, Worthington JJ. Effect of Escitalopram on the Number of DCX-Positive Cells and NMUR2 Receptor Expression in the Rat Hippocampus under the Condition of NPSR Receptor Blockade. Pharmaceuticals (Basel) 2022; 15:631. [PMID: 35631458 PMCID: PMC9143903 DOI: 10.3390/ph15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of adult neurogenesis and the expression of noncanonical stress-related neuropeptides such as neuromedin U (NMU). The present work therefore focused on immunoexpression of neuromedin U receptor 2 (NMUR2) and doublecortin (DCX) in the rat hippocampus after acute treatment with escitalopram and in combination with selective neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 10 mg/kg daily), escitalopram + SHA-68, a selective NPSR antagonist (at single dose 40 mg/kg), SHA-68 alone, and corresponding vehicle control. All animals were sacrificed under halothane anaesthesia. The whole hippocampi were quickly excised, fixed, and finally sliced for general qualitative immunohistochemical assessment of the NPSR and NMUR2 expression. The number of immature neurons was enumerated using immunofluorescent detection of doublecortin (DCX) expression within the subgranular zone (SGZ). RESULTS Acute escitalopram administration affects the number of DCX and NMUR2-expressing cells in the adult rat hippocampus. A decreased number of DCX-expressing neuroblasts after treatment with escitalopram was augmented by SHA-68 coadministration. CONCLUSIONS Early pharmacological effects of escitalopram may be at least partly connected with local NPSR-related alterations of neuroblast maturation in the rat hippocampus. Escitalopram may affect neuropeptide and DCX-expression starting even from the first dose. Adult neurogenesis may be regulated via paracrine neuropeptide S and NMU-related signaling.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland;
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziolowa 45/47, 40-635 Katowice, Poland;
| | - John J. Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK;
| |
Collapse
|
17
|
Markiewicz-Gospodarek A, Kuszta P, Baj J, Dobrowolska B, Markiewicz R. Can Neuropeptide S Be an Indicator for Assessing Anxiety in Psychiatric Disorders? Front Public Health 2022; 10:872430. [PMID: 35558538 PMCID: PMC9087177 DOI: 10.3389/fpubh.2022.872430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022] Open
Abstract
Neuropeptide S (NPS) is a neuropeptide primarily produced within three brainstem regions including locus coeruleus, trigeminal nerve nucleus, and lateral parabrachial nucleus. NPS is involved in the central regulation of stress, fear, and cognitive integration. NPS is a mediator of behavior, seeking food, and the proliferation of new adipocytes in the setting of obesity. So far, current research of NPS is only limited to animal models; data regarding its functions in humans is still scarce. Animal studies showed that anxiety and appetite might be suppressed by the action of NPS. The discovery of this neuromodulator peptide is effective considering its strong anxiolytic action, which has the potential to be an interesting therapeutic option in treating neuropsychiatric disorders. In this article, we aimed to analyze the pharmaceutical properties of NPS as well as its influence on several neurophysiological aspects-modulation of behavior, association with obesity, as well as its potential application in rehabilitation and treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Piotr Kuszta
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, Lublin, Poland
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
18
|
Tobinski AM, Rappeneau V. Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 2021; 14:ph14080780. [PMID: 34451877 PMCID: PMC8400992 DOI: 10.3390/ph14080780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been extensively studied over the last two decades for their roles in locomotion, arousal/wakefulness and anxiety-related and fear-related behaviours in rodents. However, the possible implications of the NPS/NPSR1 system, especially those of the single nucleotide polymorphism (SNP) rs324981, in stress-related disorders and substance abuse in humans remain unclear. This is possibly due to the fact that preclinical and clinical research studies have remained separated, and a comprehensive description of the role of the NPS/NPSR1 system in stress-relevant and reward-relevant endpoints in humans and rodents is lacking. In this review, we describe the role of the NPS/NPSR1 system in emotionality, stress responsiveness and addiction-like behaviour in rodents. We also summarize the alterations in the NPS/NPSR1 system in individuals with stress-related disorders, as well as the impact of the SNP rs324981 on emotion, stress responses and neural activation in healthy individuals. Moreover, we discuss the therapeutic potential and possible caveats of targeting the NPS/NPSR1 system for the treatment of stress-related disorders. The primary goal of this review is to highlight the importance of studying some rodent behavioural readouts modulated by the NPS/NPSR1 system and relevant to stress-related disorders.
Collapse
|
19
|
Park S, Flüthmann P, Wolany C, Goedecke L, Spenner HM, Budde T, Pape HC, Jüngling K. Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance. Pharmaceuticals (Basel) 2021; 14:ph14060519. [PMID: 34072275 PMCID: PMC8230190 DOI: 10.3390/ph14060519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
Background: The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or genetic interventions, little is known about intracellular signaling cascades in neurons endogenously expressing the NPSR1. Methods: To elucidate possible G-protein-dependent signaling and effector systems, we performed whole-cell patch-clamp recordings on principal neurons of the anterior basolateral amygdala of mice. We used pharmacological interventions to characterize the NPSR1-mediated current induced by NPS application. Results: Application of NPS reliably evokes inward-directed currents in amygdalar neurons recorded in brain slice preparations of male and female mice. The NPSR1-mediated current had a reversal potential near the potassium reversal potential (EK) and was accompanied by an increase in membrane input resistance. GDP-β-S and BAPTA, but neither adenylyl cyclase inhibition nor 8-Br-cAMP, abolished the current. Intracellular tetraethylammonium or 4-aminopyridine reduced the NPS-evoked current. Conclusion: NPSR1 activation in amygdalar neurons inhibits voltage-gated potassium (K+) channels, most likely members of the delayed rectifier family. Intracellularly, Gαq signaling and calcium ions seem to be mandatory for the observed current and increased neuronal excitability.
Collapse
|
20
|
Chou Y, Hor CC, Lee MT, Lee H, Guerrini R, Calo G, Chiou L. Stress induces reinstatement of extinguished cocaine conditioned place preference by a sequential signaling via neuropeptide S, orexin, and endocannabinoid. Addict Biol 2021; 26:e12971. [PMID: 33078457 DOI: 10.1111/adb.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Neurons containing neuropeptide S (NPS) and orexins are activated during stress. Previously, we reported that orexins released during stress, via orexin OX1 receptors (OX1 Rs), contribute to the reinstatement of cocaine seeking through endocannabinoid/CB1 receptor (CB1 R)-mediated dopaminergic disinhibition in the ventral tegmental area (VTA). Here, we further demonstrated that NPS released during stress is an up-stream activator of this orexin-endocannabinoid cascade in the VTA, leading to the reinstatement of cocaine seeking. Mice were trained to acquire cocaine conditioned place preference (CPP) by context-pairing cocaine injections followed by the extinction training with context-pairing saline injections. Interestingly, the extinguished cocaine CPP in mice was significantly reinstated by intracerebroventricular injection (i.c.v.) of NPS (1 nmol) in a manner prevented by intraperitoneal injection (i.p.) of SHA68 (50 mg/kg), an NPS receptor antagonist. This NPS-induced cocaine reinstatement was prevented by either i.p. or intra-VTA microinjection (i.vta.) of SB-334867 (15 mg/kg, i.p. or 15 nmol, i.vta.) and AM 251 (1.1 mg/kg, i.p. or 30 nmol, i.vta.), antagonists of OX1 Rs and CB1 Rs, respectively. Besides, NPS (1 nmol, i.c.v.) increased the number of c-Fos-containing orexin neurons in the lateral hypothalamus (LH) and increased orexin-A level in the VTA. The latter effect was blocked by SHA68. Furthermore, a 30-min restraint stress in mice reinstated extinguished cocaine CPP and was prevented by SHA68. These results suggest that NPS is released upon stress and subsequently activates LH orexin neurons to release orexins in the VTA. The released orexins then reinstate extinguished cocaine CPP via an OX1 R- and endocannabinoid-CB1 R-mediated signaling in the VTA.
Collapse
Affiliation(s)
- Yu‐Hsien Chou
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Chia Chun Hor
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Ming Tatt Lee
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine National Taiwan University Taipei Taiwan
- Faculty of Pharmaceutical Sciences UCSI University Kuala Lumpur Malaysia
| | - Hsin‐Jung Lee
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) University of Ferrara Ferrara Italy
| | - Girolamo Calo
- Section of Pharmacology, Department of Medical Sciences University of Ferrara Ferrara Italy
| | - Lih‐Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Acupuncture Sciences China Medical University Taichung Taiwan
| |
Collapse
|
21
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
22
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Wang C, Xin L, Cai CC, Cong CY, Xie JF, Kong XP, Dong CY, Li J, Cui GF, Chen HL, Ren YL, Shao YF, Hou YP. Neuropeptide S Displays as a Key Neuromodulator in Olfactory Spatial Memory. Chem Senses 2020; 45:195-202. [PMID: 32010937 DOI: 10.1093/chemse/bjaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuropeptide S (NPS) is an endogenous peptide recently recognized to be presented in the brainstem and believed to play an important role in maintaining memory. The deletion of NPS or NPS receptor (NPSR) in mice shows a deficit in memory formation. Our recent studies have demonstrated that central administration of NPS facilitates olfactory function and ameliorates olfactory spatial memory impairment induced by muscarinic cholinergic receptor antagonist and N-methyl-D-aspartate receptor antagonist. However, it remains to be determined if endogenous NPS is an indispensable neuromodulator in the control of the olfactory spatial memory. In this study, we examined the effects of NPSR peptidergic antagonist [D-Val5]NPS (10 and 20 nmol, intracerebroventricular) and nonpeptidergic antagonist SHA 68 (10 and 50 mg/kg, intraperitoneal) on the olfactory spatial memory using computer-assisted 4-hole-board olfactory spatial memory test in mice. Furthermore, immunofluorescence was employed to identify the distributions of c-Fos and NPSR immunoreactive (-ir) neurons in olfactory system and hippocampal formation known to closely relate to the olfactory spatial memory. [D-Val5]NPS dosing at 20 nmol and SHA 68 dosing at 50 mg/kg significantly decreased the number of visits to the 2 odorants interchanged spatially, switched odorants, in recall trial, and simultaneously reduced the percentage of Fos-ir in NPSR-ir neurons, which were densely distributed in the anterior olfactory nucleus, piriform cortex, subiculum, presubiculum, and parasubiculum. These findings suggest that endogenous NPS is a key neuromodulator in olfactory spatial memory.
Collapse
Affiliation(s)
- Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Le Xin
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Department of Anesthesiology, Lishan Hospital of the Anshan Central Hospital, Anshan, PR China
| | - Chen-Chen Cai
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Chao-Yu Cong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Xiang-Pan Kong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Department of Human Anatomy, School of Medicine, Hunan Normal University, Changsha, PR China
| | - Chao-Yu Dong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Department of Gynaecology, The Third People's Hospital of Yunnan Province, Kunming, PR China
| | - Jing Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Departments of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Guang-Fu Cui
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
24
|
Tillmann S, Skibdal HE, Christiansen SH, Gøtzsche CR, Hassan M, Mathé AA, Wegener G, Woldbye DPD. Sustained overexpression of neuropeptide S in the amygdala reduces anxiety-like behavior in rats. Behav Brain Res 2019; 367:28-34. [PMID: 30914309 DOI: 10.1016/j.bbr.2019.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Neuropeptide S (NPS) has shown anxiolytic-like effects in rodents after acute administration, but its long-term effects remain unknown. Gene therapy enables the targeted delivery of DNA to cell nuclei, and recombinant adeno-associated viral (rAAV) vectors have been identified as suitable tools for stable overexpression. Thus, to explore the effects of long-term expression of NPS, the present study examined anxiety- and depressive-like effects after rAAV-mediated NPS overexpression in the rat amygdala. Compared to rats injected with an empty control vector (rAAV-Empty), rAAV-NPS treatment was associated with reduced anxiety-like behavior in the elevated plus maze and light-dark box, but did not affect depressive-like behavior in the forced swim test. Importantly, rAAV-NPS did not cause confounding effects on locomotion or bodyweight as opposed to currently used anxiolytic drugs. Immunohistochemical stainings revealed NPS-positive cells in the central and basolateral region of the amygdala in rAAV-NPS but not rAAV-Empty rats, indicating successful transduction. Our study provides novel evidence for sustained anxiolytic-like properties of NPS by transgenic overexpression. These data suggest that rAAV-NPS application deserves further attention as a potential treatment strategy for anxiety in humans.
Collapse
Affiliation(s)
- Sandra Tillmann
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi E Skibdal
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Søren H Christiansen
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Hassan
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge, Sweden
| | - Aleksander A Mathé
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark.
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Grund T, Neumann ID. Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio-emotional behaviors. Cell Tissue Res 2018; 375:123-132. [PMID: 30112573 DOI: 10.1007/s00441-018-2902-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
Abstract
Neuropeptide S (NPS) has attracted the attention of the scientific community due to its potent anxiolytic-like and fear-attenuating effects studied in rodents. Therefore, NPS might represent a treatment option for neuropsychiatric disorders, such as anxiety disorders, even more so as single nucleotide polymorphisms in the human NPS receptor gene have been associated with increased anxiety traits that contribute to the pathogenesis of fear- and anxiety-related disorders. However, the signaling mechanisms underlying the behavioral effects of NPS and the interaction with other brain neuropeptides are still rather unknown. To illuminate how NPS modulates the expression of selected emotional and social behaviors, the present review focuses on neuroanatomical and electrophysiological studies, as well as intracellular signaling mechanisms following NPS receptor stimulation in rodents. We will also discuss interactions of the NPS system with two well-described neuropeptides, namely corticotropin-releasing factor and oxytocin, which may contribute to the fear- and anxiety-reducing effects.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
26
|
Baykan H, Baykan Ö, Durmaz O, Kara H, Hişmioğullari AA, Karlidere T. Plasma Neuropeptide-S Levels in Populations Diagnosed with Generalized Anxiety Disorder: A Controlled Study. ACTA ACUST UNITED AC 2018; 56:52-56. [PMID: 30911238 DOI: 10.29399/npa.22907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/02/2018] [Indexed: 11/07/2022]
Abstract
Introduction Neuropeptide S (NPS) is a novel neuropeptide reported to be involved in fear-and stress-related conditions and their corresponding neuroendocrine processes. The aim of this study was to compare the plasma NPS levels in patients suffering from generalized anxiety disorder (GAD) and those of healthy controls. Methods A total of 40 subjects diagnosed with GAD and 40 healthy controls were recruited in the study. The Hamilton Anxiety Scale (HAM-A), Generalized Anxiety Disorder-7 (GAD-7), and Hamilton Depression Scale (HAM-D) were administered to all participants to determine the severity of participants' anxiety and concomitant depressive symptoms. The plasma NPS levels were measured from the fasting venous blood samples obtained from each participant. Results The median plasma NPS level was found to be significantly higher in the GAD group in comparison to the control group (28.8 pg/mL as against 19.1 pg/mL, p=0.01). A significant positive correlation was observed between the plasma NPS levels and HAM-A scores (rs=0.23, p=0.04) as well as the GAD-7 scores (rs=0.28, p=0.01). The p-value obtained from the correlation analysis between the plasma NPS levels and HAM-D scores was 0.052. A receiver operating characteristic (ROC) analysis revealed that the plasma NPS levels could enable the identification of GAD with 67.5% sensitivity and 62.5% specificity, when the cut-off value was determined as 25.06 pg/mL. Conclusions Our results support the view that plasma NPS levels, which has demonstrated anxiolytic effects on the central nervous system, is related to the severity of anxiety in GAD and could be considered as a candidate marker for the identification of GAD.
Collapse
Affiliation(s)
- Hayriye Baykan
- Department of Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Özgür Baykan
- Department of Clinical Biochemisty, Balıkesir Atatürk State Hospital, Balıkesir, Turkey
| | - Onur Durmaz
- Department of Psychiatry, Erenköy Mental Health and Neurology Research and Training Hospital, İstanbul, Turkey
| | - Hayrettin Kara
- Department of Clinical Biochemistry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Adnan Adil Hişmioğullari
- Department of Clinical Biochemistry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Tunay Karlidere
- Department of Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
27
|
Thomasson J, Canini F, Poly-Thomasson B, Trousselard M, Granon S, Chauveau F. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol 2017; 27:1308-1318. [PMID: 28941995 DOI: 10.1016/j.euroneuro.2017.08.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour.
Collapse
Affiliation(s)
- Julien Thomasson
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France
| | - Frédéric Canini
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | | | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France.
| |
Collapse
|
28
|
Roncacè V, Polli FS, Zojicic M, Kohlmeier KA. Neuropeptide S (NPS) is a neuropeptide with cellular actions in arousal and anxiety-related nuclei: Functional implications for effects of NPS on wakefulness and mood. Neuropharmacology 2017; 126:292-317. [PMID: 28655610 DOI: 10.1016/j.neuropharm.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptide S (NPS) is a peptide recently recognized to be present in the CNS, and believed to play a role in vigilance and mood control, as behavioral studies have shown it promotes arousal and has an anxiolytic effect. Although NPS precursor is found in very few neurons, NPS positive fibers are present throughout the brain stem. Given the behavioral actions of this peptide and the wide innervation pattern, we examined the cellular effects of NPS within two brain stem nuclei known to play a critical role in anxiety and arousal: the dorsal raphe (DR) and laterodorsal tegmentum (LDT). In mouse brain slices, NPS increased cytoplasmic levels of calcium in DR and LDT cells. Calcium rises were independent of action potential generation, reduced by low extracellular levels of calcium, attenuated by IP3 - and ryanodine (RyR)-dependent intracellular calcium store depletion, and eliminated by the receptor (NPSR) selective antagonist, SHA 68. NPS also exerted an effect on the membrane of DR and LDT cells inducing inward and outward currents, which were driven by an increase in conductance, and eliminated by SHA 68. Membrane actions of NPS were found to be dependent on store-mediated calcium as depletion of IP3 and RyR stores eliminated NPS-induced currents. Finally, NPS also had actions on synaptic events, suggesting facilitation of glutamatergic and GABAergic presynaptic transmission. When taken together, actions of NPS influenced the excitability of DR and LDT neurons, which could play a role in the anxiolytic and arousal-promoting effects of this peptide.
Collapse
Affiliation(s)
- Vincenzo Roncacè
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Filip Souza Polli
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Minella Zojicic
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
29
|
Liu X, Si W, Garau C, Jüngling K, Pape HC, Schulz S, Reinscheid RK. Neuropeptide S precursor knockout mice display memory and arousal deficits. Eur J Neurosci 2017; 46:1689-1700. [PMID: 28548278 DOI: 10.1111/ejn.13613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Activation of neuropeptide S (NPS) signaling has been found to produce arousal, wakefulness, anxiolytic-like behaviors, and enhanced memory formation. In order to further study physiological functions of the NPS system, we generated NPS precursor knockout mice by homologous recombination in embryonic stem cells. NPS-/- mice were viable, fertile, and anatomically normal, when compared to their wild-type and heterozygous littermates. The total number of NPS neurons-although no longer synthesizing the peptide - was not affected by the knockout, as analyzed in NPS-/- /NPSEGFP double transgenic mice. Analysis of behavioral phenotypes revealed significant deficits in exploratory activity in NPS-/- mice. NPS precursor knockout mice displayed attenuated arousal in the hole board test, visible as reduced total nose pokes and number of holes inspected, that was not confounded by increased repetitive or stereotypic behavior. Importantly, long-term memory was significantly impaired in NPS-/- mice in the inhibitory avoidance paradigm. NPS precursor knockout mice displayed mildly increased anxiety-like behaviors in three different tests measuring responses to stress and novelty. Interestingly, heterozygous littermates often presented behavioral deficits similar to NPS-/- mice or displayed intermediate phenotype. These observations may suggest limited ligand availability in critical neural circuits. Overall, phenotypical changes in NPS-/- mice are similar to those observed in NPS receptor knockout mice and support earlier findings that suggest major functions of the NPS system in arousal, regulation of anxiety and stress, and memory formation.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Department of Pharmaceutical Science, University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Kay Jüngling
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany.,Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
30
|
Ruzza C, Calò G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opin Ther Pat 2016; 27:347-362. [PMID: 27788040 DOI: 10.1080/13543776.2017.1254195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.
Collapse
Affiliation(s)
- Chiara Ruzza
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | - Girolamo Calò
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | | | - Salvatore Pacifico
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Claudio Trapella
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Severo Salvadori
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Delia Preti
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Remo Guerrini
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
31
|
Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016; 10:36. [PMID: 27092060 PMCID: PMC4823275 DOI: 10.3389/fnana.2016.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.
Collapse
Affiliation(s)
- Fabio N Santos
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | - Celia W Pereira
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | | | - Marcos Otero-García
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat Valencia Valencia, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Unitat Predepartamental de Medicina, Universitat Jaume ICastellón, Spain
| |
Collapse
|