1
|
Ridgewell C, Sczuroski C, Merullo DJ, Lange E, Hildebrandt A, Ekon N, Neumeier WH, Smith CD, Heaton KJ. Influence of transcutaneous electrical stimulation on marksmanship, cognition, and the healthy stress response. Int J Psychophysiol 2025; 210:112540. [PMID: 40023447 DOI: 10.1016/j.ijpsycho.2025.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Transcutaneous electrical stimulation of the trigeminal and cervical nerves (TEN) has been proposed as a safe, noninvasive method of reducing stress. However, its effects on human performance and stress physiology have yet to be explored. This study explored the effects of TEN on physiological responses to stress and cognitive performance using both laboratory-standard tests of executive function and attention and a complex marksmanship task requiring sustained discrimination of friend or foe targets. Thirty healthy male and female participants completed two, single-blinded experimental sessions in which TEN or sham (order counterbalanced, n = 15 each group) was administered for 20 min prior to marksmanship and cognitive assessment. Heart rate variability was monitored continuously via electrocardiography and photoplethysmography while salivary markers of stress (cortisol, α-amylase) were collected at regular intervals. Linear mixed model analyses with standardized regression coefficients (βstan) and 95 % confidence intervals (CI) indicated no effects of stimulation condition (TEN versus sham) on marksmanship performance, cognition, salivary cortisol, or α-amylase. However, significant effects of stimulation condition were observed on heart rate variability, including increased photoplethysmography mean heart rate (βstan = -0.42 (95 % CI -0.69 - -0.14), p = 0.04) and decreased very low frequency power (βstan = 1.51 (95 % CI 0.53-2.49), p = 0.04) during marksmanship and increased electrocardiography high-frequency power at rest (βstan = -0.63 (95 % CI -1.06 - -0.21), p = 0.05). These results suggest that TEN may modulate the stress response via paradoxical effects on both sympathetic and parasympathetic nervous system activity.
Collapse
Affiliation(s)
- Caitlin Ridgewell
- Oak Ridge Institute of Science and Education, 4692 Millennium Drive, Suite 101, Belcamp, MD 21707, United States of America; Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, United States of America; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, 399 Revolution Drive, Somerville, MA 02145, United States of America; Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States of America.
| | - Cara Sczuroski
- Oak Ridge Institute of Science and Education, 4692 Millennium Drive, Suite 101, Belcamp, MD 21707, United States of America.
| | - Donna J Merullo
- Oak Ridge Institute of Science and Education, 4692 Millennium Drive, Suite 101, Belcamp, MD 21707, United States of America.
| | - Emily Lange
- Oak Ridge Institute of Science and Education, 4692 Millennium Drive, Suite 101, Belcamp, MD 21707, United States of America.
| | - Audrey Hildebrandt
- Alaka'ina Foundation FOC (Family of Companies), 12565 Research Parkway, Orlando, FL 32826, United States of America.
| | - Nicole Ekon
- United States Army Research Institute of Environmental Medicine, Military Performance Division, 10 General Greene Avenue, Natick, MA 01760, United States of America.
| | - William H Neumeier
- United States Army Research Institute of Environmental Medicine, Military Performance Division, 10 General Greene Avenue, Natick, MA 01760, United States of America; United States Army Aeromedical Research Laboratory, 6901 Farrel Road, Fort Novosel, AL 36362, United States of America.
| | - Carl D Smith
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, United States of America.
| | - Kristin J Heaton
- United States Army Research Institute of Environmental Medicine, Military Performance Division, 10 General Greene Avenue, Natick, MA 01760, United States of America.
| |
Collapse
|
2
|
Kong D, Kong L, Liu C, Wu Q, Wang J, Dai C. Commissural and monosynaptic inputs to medial vestibular nucleus GABAergic neurons in mice. Front Neurol 2024; 15:1484488. [PMID: 39440253 PMCID: PMC11493639 DOI: 10.3389/fneur.2024.1484488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Objective MVN GABAergic neurons is involved in the rebalance of commissural system contributing to alleviating acute peripheral vestibular dysfunction syndrome. This study aims to depict monosynaptic inputs to MVN GABAergic neurons. Methods The modified rabies virus-based retrogradation method combined with the VGAT-IRES-Cre mice was used in this study. Moreover, the commissural connections with MVN GABAergic neurons were analyzed. Results We identified 60 nuclei projecting to MVN GABAergic neurons primarily distributed in the cerebellum and the medulla. The uvula-nodulus, gigantocellular reticular nucleus, prepositus nucleus, intermediate reticular nucleus, and three other nuclei sent dense inputs to MVN GABAergic neurons. The medial (fastigial) cerebellar nucleus, dorsal paragigantocellular nucleus, lateral paragigantocellular nucleus and 10 other nuclei sent moderate inputs to MVN GABAergic neurons. Sparse inputs to MVN GABAergic neurons originated from the nucleus of the solitary tract, lateral reticular nucleus, pedunculopontine tegmental nucleus and 37 other nuclei. The MVN GABAergic neurons were regulated by the contralateral MVN, lateral vestibular nucleus, superior vestibular nucleus, and inferior vestibular nucleus. Conclusion Our study contributes to further understanding of the vestibular dysfunction in terms of neural circuits and search for new strategies to facilitate vestibular compensation.
Collapse
Affiliation(s)
- Dedi Kong
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lingxi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chengwei Liu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
McCarthy B, Datta S, Sesa-Ashton G, Wong R, Henderson LA, Dawood T, Macefield VG. Non-additive effects of electrical stimulation of the dorsolateral prefrontal cortex and the vestibular system on muscle sympathetic nerve activity in humans. Exp Brain Res 2024; 242:1773-1786. [PMID: 38822824 PMCID: PMC11208219 DOI: 10.1007/s00221-024-06852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Sinusoidal galvanic vestibular stimulation (sGVS) induces robust modulation of muscle sympathetic nerve activity (MSNA) alongside perceptions of side-to-side movement, sometimes with an accompanying feeling of nausea. We recently showed that transcranial alternating current stimulation (tACS) of the dorsolateral prefrontal cortex (dlPFC) also modulates MSNA, but does not generate any perceptions. Here, we tested the hypothesis that when the two stimuli are given concurrently, the modulation of MSNA would be additive. MSNA was recorded from 11 awake participants via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve at the fibular head. Sinusoidal stimuli (± 2 mA, 0.08 Hz, 100 cycles) were applied in randomised order as follows: (i) tACS of the dlPFC at electroencephalogram (EEG) site F4 and referenced to the nasion; (ii) bilateral sGVS applied to the vestibular apparatuses via the mastoid processes; and (iii) tACS and sGVS together. Previously obtained data from 12 participants supplemented the data for stimulation protocols (i) and (ii). Cross-correlation analysis revealed that each stimulation protocol caused significant modulation of MSNA (modulation index (paired data): 35.2 ± 19.4% for sGVS; 27.8 ± 15.2% for tACS), but there were no additive effects when tACS and sGVS were delivered concurrently (32.1 ± 18.5%). This implies that the vestibulosympathetic reflexes are attenuated with concurrent dlPFC stimulation. These results suggest that the dlPFC is capable of blocking the processing of vestibular inputs through the brainstem and, hence, the generation of vestibulosympathetic reflexes.
Collapse
Affiliation(s)
- Brendan McCarthy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sudipta Datta
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Rebecca Wong
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
4
|
Machuca-Márquez P, Sánchez-Benito L, Menardy F, Urpi A, Girona M, Puighermanal E, Appiah I, Palmiter RD, Sanz E, Quintana A. Vestibular CCK signaling drives motion sickness-like behavior in mice. Proc Natl Acad Sci U S A 2023; 120:e2304933120. [PMID: 37847729 PMCID: PMC10622874 DOI: 10.1073/pnas.2304933120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processing of movement input from the inner ear. Motion-induced activation of VN neurons recapitulates MS-related signs. However, the genetic identity of VN neurons mediating MS-related autonomic and aversive responses remains unknown. Here, we identify a central role of cholecystokinin (CCK)-expressing VN neurons in motion-induced malaise. Moreover, we show that CCK VN inputs onto the parabrachial nucleus activate Calca-expressing neurons and are sufficient to establish avoidance to novel food, which is prevented by CCK-A receptor antagonism. These observations provide greater insight into the neurobiological regulation of MS by identifying the neural substrates of MS and providing potential targets for treatment.
Collapse
Affiliation(s)
| | - Laura Sánchez-Benito
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Fabien Menardy
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Mònica Girona
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Emma Puighermanal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Isabella Appiah
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Richard D. Palmiter
- HHMI, University of Washington, Seattle, WA98195
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Elisenda Sanz
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Albert Quintana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona08193, Spain
- Focus Area for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom2520, South Africa
| |
Collapse
|
5
|
Lara Aparicio SY, Laureani Fierro ÁDJ, Aranda Abreu GE, Toledo Cárdenas R, García Hernández LI, Coria Ávila GA, Rojas Durán F, Aguilar MEH, Manzo Denes J, Chi-Castañeda LD, Pérez Estudillo CA. Current Opinion on the Use of c-Fos in Neuroscience. NEUROSCI 2022; 3:687-702. [PMID: 39483772 PMCID: PMC11523728 DOI: 10.3390/neurosci3040050] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 11/03/2024] Open
Abstract
For years, the biochemical processes that are triggered by harmful and non-harmful stimuli at the central nervous system level have been extensively studied by the scientific community through numerous techniques and animal models. For example, one of these techniques is the use of immediate expression genes, which is a useful, accessible, and reliable method for observing and quantifying cell activation. It has been shown that both the c-fos gene and its protein c-Fos have rapid activation after stimulus, with the length of time that they remain active depending on the type of stimulus and the activation time depending on the stimulus and the structure studied. Fos requires the participation of other genes (such as c-jun) for its expression (during hetero-dimer forming). c-Fos dimerizes with c-Jun protein to form factor AP-1, which promotes the transcription of various genes. The production and removal of c-Fos is part of cellular homeostasis, but its overexpression results in increased cell proliferation. Although Fos has been used as a marker of cellular activity since the 1990s, which molecular mechanism participates in the regulation of the expression of this protein is still unknown because the gene and the protein are not specific to neurons or glial cells. For these reasons, this work has the objective of gathering information about this protein and its use in neuroscience.
Collapse
Affiliation(s)
- Sandra Yasbeth Lara Aparicio
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Av. Luis Castelazo S/N, Col. Industrial Las Ánimas, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | | | - Rebeca Toledo Cárdenas
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Luis Isauro García Hernández
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Genaro Alfonso Coria Ávila
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Fausto Rojas Durán
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | - Jorge Manzo Denes
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Lizbeth Donají Chi-Castañeda
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | |
Collapse
|
6
|
Shi XB, Wang J, Li FT, Zhang YB, Qu WM, Dai CF, Huang ZL. Whole-brain monosynaptic outputs and presynaptic inputs of GABAergic neurons in the vestibular nuclei complex of mice. Front Neurosci 2022; 16:982596. [PMID: 36090271 PMCID: PMC9459096 DOI: 10.3389/fnins.2022.982596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
GABAergic neurons in the vestibular nuclei (VN) participate in multiple vital vestibular sensory processing allowing for the maintenance and rehabilitation of vestibular functions. However, although the important role of GABA in the central vestibular system has been widely reported, the underlying neural circuits between VN GABAergic neurons and other brain functional regions remain elusive, which limits the further study of the underlying mechanism. Hence, it is necessary to elucidate neural connectivity based on outputs and inputs of GABAergic neurons in the VN. This study employed a modified rabies virus retrograde tracing vector and cre-dependent adeno-associated viruses (AAVs) anterograde tracing vector, combined with a transgenic VGAT-IRES-Cre mice, to map the inputs and outputs of VN GABAergic neurons in the whole brain. We found that 51 discrete brain regions received projections from VN GABAergic neurons in the whole brain, and there were 77 upstream nuclei innervating GABAergic neurons in the VN. These nuclei were mainly located in four brain regions, including the medulla, pons, midbrain, and cerebellum. Among them, VN GABAergic neurons established neural circuits with some functional nuclei in the whole brain, especially regulating balance maintenance, emotion control, pain processing, sleep and circadian rhythm regulation, and fluid homeostasis. Therefore, this study deepens a comprehensive understanding of the whole-brain neural connectivity of VN, providing the neuroanatomical information for further research on the neural mechanism of the co-morbidities with vestibular dysfunction.
Collapse
Affiliation(s)
- Xun-Bei Shi
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Fei-Tian Li
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi-Bo Zhang
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chun-Fu Dai
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Chun-Fu Dai
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Zhi-Li Huang
| |
Collapse
|
7
|
Stitt IM, Wellings TP, Drury HR, Jobling P, Callister RJ, Brichta AM, Lim R. Properties of Deiters' neurons and inhibitory synaptic transmission in the mouse lateral vestibular nucleus. J Neurophysiol 2022; 128:131-147. [PMID: 35730750 DOI: 10.1152/jn.00016.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deiters' neurons, located exclusively in the lateral vestibular nucleus (LVN), are involved in vestibulospinal reflexes, innervate extensor motoneurons that drive anti-gravity muscles, and receive inhibitory inputs from the cerebellum. We investigated intrinsic membrane properties, short-term plasticity, and inhibitory synaptic inputs of mouse Deiters' and non-Deiters' neurons within the LVN. Deiters' neurons are distinguished from non-Deiters' neurons by their very low input resistance (105.8 vs 521.8 MOhms) respectively, long axons that project as far as the ipsilateral lumbar spinal cord, and expression of the cytostructural protein, non-phosphorylated neurofilament protein (NPNFP). Whole-cell patch clamp recordings in brainstem slices show most Deiters' and non-Deiters' neurons were tonically active (>92%). Short-term plasticity was studied by examining discharge rate modulation following release from hyperpolarization (post-inhibitory rebound firing; PRF) and depolarization (firing rate adaptation; FRA). PRF and FRA gain were similar in Deiters' and non-Deiters' neurons (PRF: 24.9 vs. 20.2 Hz and FRA gain: 231.5 vs. 287.8 spikes/sec/nA respectively). Inhibitory synaptic input to both populations showed GABAergic rather than glycinergic inhibition dominated in Deiters' neurons and GABAA miniature inhibitory postsynaptic current (mIPSC) frequency was much higher in Deiters' neurons compared to non-Deiters' neurons (~15.9 vs. 1.4 Hz respectively). Our data suggest Deiters' neurons can be reliably identified by their intrinsic membrane and synaptic properties. They are tonically active, glutamatergic, have low sensitivity or 'gain', exhibit little adaptation, and receive strong GABAergic input. Together, these features suggest, since Deiters' neurons have minimal short-term plasticity they are well-suited to a role encoding tonic signals for the vestibulospinal reflex.
Collapse
Affiliation(s)
- Iain M Stitt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Thomas P Wellings
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Hannah Rose Drury
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Phillip Jobling
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Robert J Callister
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Alan Martin Brichta
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Rebecca Lim
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| |
Collapse
|
8
|
Bogle JM, Benarroch E, Sandroni P. Vestibular-autonomic interactions: beyond orthostatic dizziness. Curr Opin Neurol 2022; 35:126-134. [PMID: 34839339 DOI: 10.1097/wco.0000000000001013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current literature describing vestibular-autonomic interactions and to describe their putative role in various disorders' clinical presentations, including orthostatic dizziness and motion sensitivity. RECENT FINDINGS The vestibular-autonomic reflexes have long been described as they relate to cardiovascular and respiratory function. Although orthostatic dizziness may be in part related to impaired vestibulo-sympathetic reflex (orthostatic hypotension), there are various conditions that may present similarly. A recent clinical classification aims to improve identification of individuals with hemodynamic orthostatic dizziness so that appropriate recommendations and management can be efficiently addressed. Researchers continue to improve understanding of the underlying vestibular-autonomic reflexes with recent studies noting the insular cortex as a cortical site for vestibular sensation and autonomic integration and modulation. Work has further expanded our understanding of the clinical presentation of abnormal vestibular-autonomic interactions that may occur in various conditions, such as aging, peripheral vestibular hypofunction, traumatic brain injury, and motion sensitivity. SUMMARY The vestibular-autonomic reflexes affect various sympathetic and parasympathetic functions. Understanding these relationships will provide improved identification of underlying etiology and drive improved patient management.
Collapse
Affiliation(s)
- Jamie M Bogle
- Mayo Clinic Arizona, Department of Otolaryngology - Head and Neck Surgery, Division of Audiology, Scottsdale, AZ, USA
| | | | - Paola Sandroni
- Mayo Clinic Arizona, Department of Neurology, Division of Autonomic Disorders, Scottsdale, AZ, USA
| |
Collapse
|
9
|
Pliego A, Vega R, Gómez R, Reyes-Lagos JJ, Soto E. A transient decrease in heart rate with unilateral and bilateral galvanic vestibular stimulation in healthy humans. Eur J Neurosci 2021; 54:4670-4681. [PMID: 34076918 DOI: 10.1111/ejn.15338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
The study of cardiovascular function with galvanic vestibular stimulation has provided evidence on the neural structures that are involved in the vestibulo-autonomic reflex. This study determined if the effect on heart rate using galvanic vestibular stimulation persists after provoking a sympathetic response and if this response differs when using unilateral or transmastoid (bilateral) stimulation. We analysed heart rate and heart rate variability using unilateral and transmastoid galvanic vestibular stimulation combined with cardiovascular reflex evoked by postural change in 24 healthy human subjects. Three electrode configurations were selected for unilateral stimulation considering the anatomical location of each semicircular canal. We compared recordings performed in seated and standing positions, and with unilateral and transmastoid stimulation. With subjects seated, a significant transient decrease in heart rate was observed with unilateral stimulation. With transmastoid stimulation, heart rate decreased in both seated and standing positions. Average intervals between normal heartbeats recorded with stimulation resemble parasympathetic cardiac function induced by auricular vagal nerve stimulation. Our results indicate that unilateral stimulation does not eliminate the natural heart rate increase caused by orthostatic hypotension. In contrast, transmastoid stimulation provoked a transient reduction in heart rate, even when subjects were standing. These responses should be considered while performing experiments with galvanic vestibular stimulation and subsequent effects in cardiac regulation mechanisms.
Collapse
Affiliation(s)
- Adriana Pliego
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca de Lerdo, México.,Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Rocío Gómez
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca de Lerdo, México
| | - José J Reyes-Lagos
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca de Lerdo, México
| | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
10
|
Rice D, Martinelli GP, Jiang W, Holstein GR, Rajguru SM. Pulsed Infrared Stimulation of Vertical Semicircular Canals Evokes Cardiovascular Changes in the Rat. Front Neurol 2021; 12:680044. [PMID: 34122320 PMCID: PMC8193737 DOI: 10.3389/fneur.2021.680044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.
Collapse
Affiliation(s)
- Darrian Rice
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States.,Department of Otolaryngology, University of Miami, Miami, FL, United States
| |
Collapse
|
11
|
Sun M, Wang H, Gong L, Qi D, Wang X, Li Y, Jiang H. A novel time-dimension and circadian rhythm-dependent strategy for pharmacodynamic evaluation of Uncaria in the regulation of neurotransmitter circadian metabolic homeostasis in spontaneously hypertensive rats. Biomed Pharmacother 2020; 131:110704. [PMID: 32916538 DOI: 10.1016/j.biopha.2020.110704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022] Open
Abstract
In the present study, we aimed to use metabolomics platforms to examine circadian-regulated neurotransmitters across a 24-h day and the effects of Uncaria administration on daily rhythmicity in order to establish a strategy for evaluating the spatiotemporal efficacy evaluation strategy of Uncaria. By using targeted ultrahigh performance liquid chromatography-mass spectrometry metabolomics, we quantified 32 neurotransmitter metabolites every 4 h over 24 h. To assess 24-h metabolite rhythmicity, we performed cosinor analysis. The expression of hypothalamic rhythm genes was detected by reverse transcription polymerase chain reaction (RT-PCR). Data revealed circadian loss of many neurotransmitters during the entire circadian cycle in the serum of group M, indicating that hypertension causes circadian rhythm disorders. Cosinor analysis of the rhythmic oscillations of the levels of 32 neurotransmitters in the three groups showed that the metabolite rhythms peaked at approximately the same time of day (ZT4 and ZT16). Moreover, the amplitudes of the metabolite rhythms were altered. After treatment with Uncaria, the amplitudes of 13 neurotransmitters reverted to normal. The change trends in the hypothalamic rhythm genes confirmed the rhythm changes in neurotransmitters. Collectively, a novel pharmacodynamic evaluation strategy was established to dynamically observe the holistic effects of Uncaria on 32 circulating neurotransmitters within 24 h from the perspective of time dimension.
Collapse
Affiliation(s)
- Mengjia Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huanjun Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lili Gong
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Dongmei Qi
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Xiaoming Wang
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yunlun Li
- TCM Clinical Research Base for Hypertension, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Haiqiang Jiang
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
12
|
Li Y, Yu R, Zhang D, Yang W, Hou Q, Li Y, Jiang H. Deciphering the Mechanism of the Anti-Hypertensive Effect of Isorhynchophylline by Targeting Neurotransmitters Metabolism of Hypothalamus in Spontaneously Hypertensive Rats. ACS Chem Neurosci 2020; 11:1563-1572. [PMID: 32356970 DOI: 10.1021/acschemneuro.9b00699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Essential hypertension is a major risk factor for cardiovascular disease that can lead eventually to structural and functional alterations in the brain. Accumulating evidence has suggested that the increased activities in renin-angiotensin system and sympathetic nerve participated in the pathogenesis of hypertension that is related to the imbalance between neurotransmitters. The potential role in essential hypertension arising from alterations of neurotransmitters in the central nervous system remains understudied. Isorhynchophylline is a major oxindole alkaloid extracted from Uncaria rhynchophylla, which has been widely used for treating hypertension and neurodegenerative diseases. Whether isorhynchophylline acts on neurotransmitters to lower blood pressure has been hypothesized but rarely demonstrated unequivocally. Here, we studied the metabolic neurotransmitter profiles in the hypothalamus using a targeted metabolomic approach in spontaneously hypertensive rats after isorhynchophylline intervention. Our study demonstrated that isorhynchophylline exhibited a strong anti-hypertensive effect in spontaneously hypertensive rats by improving the neurotransmitter imbalance in the hypothalamus and inhibiting the overactivation of the renin-angiotensin system and sympathetic nerve system. Overall, this study played an essential role in enhancing our understanding of the mechanism of isorhynchophylline in essential hypertension and in providing theoretical evidence for future research and clinical application.
Collapse
Affiliation(s)
- Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Ruixue Yu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Traditional Chinese Medicine Clinical Research Base for Hypertension, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| |
Collapse
|
13
|
Abe C, Yamaoka Y, Maejima Y, Mikami T, Yokota S, Yamanaka A, Morita H. VGLUT2-expressing neurons in the vestibular nuclear complex mediate gravitational stress-induced hypothermia in mice. Commun Biol 2020; 3:227. [PMID: 32385401 PMCID: PMC7210111 DOI: 10.1038/s42003-020-0950-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
The vestibular system, which is essential for maintaining balance, contributes to the sympathetic response. Although this response is involved in hypergravity load-induced hypothermia in mice, the underlying mechanism remains unknown. This study showed that hypergravity (2g) decreased plasma catecholamines, which resulted in hypoactivity of the interscapular brown adipose tissue (iBAT). Hypothermia induced by 2g load was significantly suppressed by administration of beta-adrenergic receptor agonists, suggesting the involvement of decrease in iBAT activity through sympathoinhibition. Bilateral chemogenetic activation of vesicular glutamate transporter 2 (VGLUT2)-expressing neurons in the vestibular nuclear complex (VNC) induced hypothermia. The VGLUT2-expressing neurons contributed to 2g load-induced hypothermia, since their deletion suppressed hypothermia. Although activation of vesicular gamma-aminobutyric acid transporter-expressing neurons in the VNC induced slight hypothermia instead of hyperthermia, their deletion did not affect 2g load-induced hypothermia. Thus, we concluded that 2g load-induced hypothermia resulted from sympathoinhibition via the activation of VGLUT2-expressing neurons in the VNC. Chikara Abe, Yusuke Yamaoka et al. show that chemogenetic activation of VGLUT2-expressing neurons in the vestibular nuclear complex induces hypothermia, while their deletion suppresses hypergravity load-induced hypothermia in mice. These findings suggest an important role for these glutamatergic neurons in thermoregulation.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Yusuke Yamaoka
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yui Maejima
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoe Mikami
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
14
|
Aghababaei Ziarati M, Taziki MH, Hosseini SM. Autonomic laterality in caloric vestibular stimulation. World J Cardiol 2020; 12:144-154. [PMID: 32431785 PMCID: PMC7215963 DOI: 10.4330/wjc.v12.i4.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Caloric stimulation of the vestibular system is associated with autonomic response. The lateralization in the nervous system activities also involves the autonomic nervous system.
AIM To compare the effect of the right and left ear caloric test on the cardiac sympathovagal tone in healthy persons.
METHODS This self-control study was conducted on 12 healthy male volunteers. The minimal ice water caloric test was applied for vestibular stimulation. This was done by irrigating 1 milliliter of 4 ± 2 °C ice water into the external ear canal in 1 s. In each experiment, only one ear was stimulated. For each ear, the pessimum position was considered as sham control and the optimum position was set as caloric vestibular stimulation of horizontal semicircular channel. The order of right or left caloric vestibular stimulation and the sequence of optimum or pessimum head position in each set were random. The recovery time between each calorie test was 5 min. The short-term heart rate variability (HRV) was used for cardiac sympathovagal tone metrics. All variables were compared using the analysis of variance.
RESULTS After caloric vestibular stimulation, the short-term time-domain and frequency-domain HRV indices as well as, the systolic and the diastolic arterial blood pressure, the respiratory rate and the respiratory amplitude, had no significant changes. These negative results were similar in the right and the left sides. Nystagmus duration of left caloric vestibular stimulations in the optimum and the pessimum positions had significant differences (e.g., 72.14 ± 39.06 vs 45.35 ± 35.65, P < 0.01). Nystagmus duration of right caloric vestibular stimulations in the optimum and the pessimum positions had also significant differences (e.g., 86.42 ± 67.20 vs 50.71 ± 29.73, P < 0.01). The time of the start of the nystagmus following caloric vestibular stimulation had no differences in both sides and both positions.
CONCLUSION Minimal ice water caloric stimulation of the right and left vestibular system did not affect the cardiac sympathovagal balance according to HRV indices.
Collapse
Affiliation(s)
- Mohammadreza Aghababaei Ziarati
- Department of Internal Medicine, Medical Faculty, Golestan University of Medical Sciences, Gorgan 4934174515, Golestan, Iran
| | - Mohammad Hosein Taziki
- Department of Otolaryngology, Medical Faculty, Golestan University of Medical Sciences, Gorgan 4934174515, Golestan, Iran
| | - Seyed Mehran Hosseini
- Department of Physiology, Medical Faculty, Golestan University of Medical Sciences, Gorgan 4934174515, Golestan, Iran
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4934174515, Golestan, Iran
| |
Collapse
|
15
|
Abe C, Yamaoka Y, Maejima Y, Mikami T, Morita H. Hypergravity-induced plastic alteration of the vestibulo-sympathetic reflex involves decrease in responsiveness of CAMK2-expressing neurons in the vestibular nuclear complex. J Physiol Sci 2019; 69:903-917. [PMID: 31435871 PMCID: PMC10942005 DOI: 10.1007/s12576-019-00705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
Abstract
The vestibular system contributes to not only eye movement and posture but also the sympathetic response. Plastic alteration of the vestibulo-sympathetic reflex is induced by hypergravity load; however, the mechanism remains unknown. Here, we examined 2 g-induced changing in responsiveness of CAMK2-expressing neurons in the vestibular nucleus complex using optogenetic tools. The excitatory photostimulation of the CAMK2-expressing neurons in the unilateral vestibular nuclear complex induced body tilt to the contralateral side, while inhibitory photostimulation showed the opposite response. Photoactivation of either cell body or the axonal terminal in the rostral ventrolateral medulla showed sympathoexcitation followed by the pressor response. Furthermore, this response was significantly attenuated (49.8 ± 4%) after the 1st day of 2 g loading, and this value was further reduced by the 5th day (22.4 ± 3%), suggesting that 2 g-induced attenuation of the vestibulo-sympathetic reflex involves at least decrease in responsiveness of CAMK2-expressing neurons in the vestibular nuclear complex.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Yusuke Yamaoka
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yui Maejima
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoe Mikami
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
16
|
Gagliuso AH, Chapman EK, Martinelli GP, Holstein GR. Vestibular neurons with direct projections to the solitary nucleus in the rat. J Neurophysiol 2019; 122:512-524. [PMID: 31166818 PMCID: PMC6734410 DOI: 10.1152/jn.00082.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.
Collapse
Affiliation(s)
- Amelia H Gagliuso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily K Chapman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Abstract
Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Mingjia Dai
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Catherine Cho
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| |
Collapse
|
18
|
Mathews MA, Camp AJ, Murray AJ. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2017; 8:552. [PMID: 28824449 PMCID: PMC5539236 DOI: 10.3389/fphys.2017.00552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.
Collapse
Affiliation(s)
- Miranda A Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondon, United Kingdom
| |
Collapse
|
19
|
Curthoys IS, MacDougall HG, Vidal PP, de Waele C. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function. Front Neurol 2017; 8:117. [PMID: 28424655 PMCID: PMC5371610 DOI: 10.3389/fneur.2017.00117] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023] Open
Abstract
Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I receptors whose hair bundles are weakly tethered to the overlying otolithic membrane. The afferent neurons, which form calyx synapses on type I striolar receptors, have irregular resting discharge and have low thresholds to high frequency (e.g., 500 Hz) bone-conducted vibration and air-conducted sound. High-frequency sound and vibration likely causes fluid displacement which deflects the weakly tethered hair bundles of the very fast type I receptors. Irregular vestibular afferents show phase locking, similar to cochlear afferents, up to stimulus frequencies of kilohertz. We term these irregular afferents the transient system signaling dynamic otolithic stimulation. A 500-Hz vibration preferentially activates the otolith irregular afferents, since regular afferents are not activated at intensities used in clinical testing, whereas irregular afferents have low thresholds. We show how this sustained and transient distinction applies at the vestibular nuclei. The two systems have differential responses to vibration and sound, to ototoxic antibiotics, to galvanic stimulation, and to natural linear acceleration, and such differential sensitivity allows probing of the two systems. A 500-Hz vibration that selectively activates irregular otolithic afferents results in stimulus-locked eye movements in animals and humans. The preparatory myogenic potentials for these eye movements are measured in the new clinical test of otolith function—ocular vestibular-evoked myogenic potentials. We suggest 500-Hz vibration may identify the contribution of the transient system to vestibular controlled responses, such as vestibulo-ocular, vestibulo-spinal, and vestibulo-sympathetic responses. The prospect of particular treatments targeting one or the other of the transient or sustained systems is now being realized in the clinic by the use of intratympanic gentamicin which preferentially attacks type I receptors. We suggest that it is valuable to view vestibular responses by this sustained-transient distinction.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Hamish G MacDougall
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Pierre-Paul Vidal
- Cognition and Action Group, CNRS UMR8257, Centre Universitaire des Saints-Pères, University Paris Descartes, Paris, France
| | | |
Collapse
|
20
|
McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol 2017; 8:112. [PMID: 28396651 PMCID: PMC5366978 DOI: 10.3389/fneur.2017.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
21
|
Holstein GR, Friedrich VL, Martinelli GP. Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons. Exp Brain Res 2016; 234:2747-60. [PMID: 27411812 DOI: 10.1007/s00221-016-4725-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Victor L Friedrich
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
22
|
Abstract
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders.
Collapse
Affiliation(s)
- C D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|