1
|
Wang X, Tian S, Qu Z, Meng R, Ni G, Liu M, Cao H. Investigating the protective effect of hydroxylated fullerenes on cognitive function in rats with temporal lobe epilepsy. Sci Rep 2025; 15:14142. [PMID: 40269130 PMCID: PMC12019555 DOI: 10.1038/s41598-025-99259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025] Open
Abstract
The objective of this study was to explore the protective effects of hydroxy fullerenes (HFs) on cognitive function in rats with temporal lobe epilepsy (TLE) and to elucidate the underlying mechanisms. Eighteen Sprague-Dawley (SD) rats were randomly selected and administered pilocarpine (50 mg/kg) intraperitoneally to establish a TLE model, and were then randomly assigned to the TLE group and the TLE + HFs group. An additional nine SD rats were served as a normal control group (CON group). The Morris water maze (MWM) test was utilized to assess the spatial learning and memory capabilities of the rats. Nissl staining was employed to observe the survival neurons in the CA1 and CA3 regions. In addition, the ultrastructure of synapses in the CA1 region was examined using transmission electron microscopy (TEM). The expressions of postsynaptic densitin-95 (PSD-95) and synaptophysin (SYP) in the hippocampus were detected via western blotting. The findings revealed that compared to the CON group, the TLE group exhibited significantly prolonged escape latency, reduced platform crossing frequency, and shortened time spent in the target quadrant. The number of surviving neurons in the CA1 and CA3 regions and the expression of PSD95 and SYP protein were significantly decreased (P < 0.05 or P < 0.001). However, these alterations were reversed in the TLE + HFs group. It is suggested that HFs may enhance the spatial learning and memory ability of TLE rats by preserving the integrity of hippocampal neurons, up-regulating the expression of SYP and PSD95 in hippocampus.
Collapse
Affiliation(s)
- Xiaoqing Wang
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Shuang Tian
- The Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhenzhen Qu
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ran Meng
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guangxiao Ni
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Min Liu
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Huifang Cao
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Ramon C, Doud A, Holmes MD. Decrease in phase slip rates and phase cone structures during seizure evolution and epileptogenic activities derived from microgrid ECoG data. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100126. [PMID: 38616959 PMCID: PMC11015059 DOI: 10.1016/j.crneur.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 04/16/2024] Open
Abstract
Sudden phase changes are related to cortical phase transitions, which likely change in frequency and spatial distribution as epileptogenic activity evolves. A 100 s long section of micro-ECoG data obtained before and during a seizure was selected and analyzed. In addition, nine other short-duration epileptic events were also examined. The data was collected at 420 Hz, imported into MATLAB, downsampled to 200 Hz, and filtered in the 1-50 Hz band. The Hilbert transform was applied to compute the analytic phase, which was then unwrapped, and detrended to look for sudden phase changes. The phase slip rate (counts/s) and its acceleration (counts/s2) were computed with a stepping window of 1-s duration and with a step size of 5 ms. The analysis was performed for theta (3-7 Hz), alpha (7-12 Hz), and beta (12-30 Hz) bands. The phase slip rate on all electrodes in the theta band decreased while it increased for the alpha and beta bands during the seizure period. Similar patterns were observed for isolated epileptogenic events. Spatiotemporal contour plots of the phase slip rates were also constructed using a montage layout of 8 × 8 electrode positions. These plots exhibited dynamic and oscillatory formation of phase cone-like structures which were higher in the theta band and lower in the alpha and beta bands during the seizure period and epileptogenic events. These results indicate that the formation of phase cones might be an excellent biomarker to study the evolution of a seizure and also the cortical dynamics of isolated epileptogenic events.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
- Regional Epilepsy Center, Harborview Medical Center, Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander Doud
- Providence Spokane Neuroscience Institute, 105 West 8th Avenue, Spokane, WA, 99204, USA
| | - Mark D. Holmes
- Regional Epilepsy Center, Harborview Medical Center, Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Mortari MR, Cunha AOS, dos Anjos LC, Amaral HO, Quintanilha MVT, Gelfuso EA, Homem-de-Mello M, de Almeida H, Rego S, Maigret B, Lopes NP, dos Santos WF. A new class of peptides from wasp venom: a pathway to antiepileptic/neuroprotective drugs. Brain Commun 2023; 5:fcad016. [PMID: 36844150 PMCID: PMC9945850 DOI: 10.1093/braincomms/fcad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/12/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The ability of venom-derived peptides to disrupt physiological processes in mammals provides an exciting source for pharmacological development. Our research group has identified a new class of neuroactive peptides from the venom of a Brazilian social wasp, Polybia occidentalis, with the potential pharmacological profile to treat epilepsies. The study was divided into five phases: Phase 1 concerned the extraction, isolation and purification of Occidentalin-1202(n) from the crude venom, followed by the synthesis of an identical analogue peptide, named Occidentalin-1202(s). In Phase 2, we described the effects of both peptides in two acute models of epilepsy-kainic acid and pentylenetetrazole-induced model of seizures-and measured estimated ED50 and therapeutic index values, electroencephalographic studies and C-fos evaluation. Phase 3 was a compilation of advanced tests performed with Occidentalin-1202(s) only, reporting histopathological features and its performance in the pilocarpine-induced status epilepticus. After the determination of the antiepileptic activity of Occidentalin-1202(s), Phase 4 consisted of evaluating its potential adverse effects, after chronic administration, on motor coordination (Rotarod) and cognitive impairment (Morris water maze) tests. Finally, in Phase 5, we proposed a mechanism of action using computational models with kainate receptors. The new peptide was able to cross the blood-brain barrier and showed potent antiseizure effects in acute (kainic acid and pentylenetetrazole) and chronic (temporal lobe epilepsy model induced by pilocarpine) models. Motor and cognitive behaviour were not adversely affected, and a potential neuroprotective effect was observed. Occidentalin-1202 can be a potent blocker of the kainate receptor, as assessed by computational analysis, preventing glutamate and kainic acid from binding to the receptor's active site. Occidentalin-1202 is a peptide with promising applicability to treat epilepsy and can be considered an interesting drug model for the development of new medicines.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- Correspondence to: Márcia Renata Mortari Neuropharmacology Laboratory Department of Physiological Sciences, Institute of Biological Sciences University of Brasília, Campus Darcy Ribeiro Asa Norte, Brasília 70910-900, Brazil E-mail:
| | - Alexandra O S Cunha
- Neurobiology and Venoms Laboratory, Department of Biology, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| | - Lilian C dos Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Henrique O Amaral
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Maria Varela Torres Quintanilha
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Erica A Gelfuso
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 71910-900, Brazil
| | - Mauricio Homem-de-Mello
- in Silico Toxicology Laboratory (inSiliTox), Department of Pharmacy, Health Sciences School, University of Brasilia, Brasilia 71910-900, Brazil
| | - Hugo de Almeida
- Team CAPSID, Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA), Vandoeuvre Les Nancy F-54506, France
| | - Solange Rego
- Team CAPSID, Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA), Vandoeuvre Les Nancy F-54506, France
| | - Bernard Maigret
- Team CAPSID, Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA), Vandoeuvre Les Nancy F-54506, France
| | - Norberto P Lopes
- Organic Chemistry Laboratory, Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| | - Wagner F dos Santos
- Neurobiology and Venoms Laboratory, Department of Biology, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil
| |
Collapse
|
4
|
Shishmanova-Doseva M, Atanasova D, Ioanidu L, Uzunova Y, Atanasova M, Peychev L, Tchekalarova J. The anticonvulsant effect of chronic treatment with topiramate after pilocarpine-induced status epilepticus is accompanied by a suppression of comorbid behavioral impairments and robust neuroprotection in limbic regions in rats. Epilepsy Behav 2022; 134:108802. [PMID: 35792414 DOI: 10.1016/j.yebeh.2022.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a widespread neurological disorder frequently associated with a lot of comorbidities. The present study aimed to evaluate the effects of the antiseizure medication topiramate (TPM) on spontaneous motor seizures, the pathogenesis of comorbid mood and cognitive impairments, hippocampal neuronal loss, and oxidative stress and inflammation in a rat model of temporal lobe epilepsy (TLE). Vehicle/TPM treatment (80 mg/kg, p.o.) was administered 3 h after the pilocarpine (pilo)-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. The chronic TPM treatment caused side effects in naïve rats, including memory disturbance, anxiety, and depressive-like responses. However, the anticonvulsant effect of this drug, administered during epileptogenesis, was accompanied by beneficial activity against comorbid behavioral impairments. The drug treatment suppressed the SE-induced neuronal damage in limbic structures, including the dorsal (CA1 and CA2 subfield), the ventral (CA1, CA2 and CA3) hippocampus, the basolateral amygdala, and the piriform cortex, while was ineffective against the surge in the oxidative stress and inflammation. Our results suggest that neuroprotection is an essential mechanism of TPM against spontaneous generalized seizures and concomitant emotional and cognitive impairments.
Collapse
Affiliation(s)
- Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria
| | - Lyubka Ioanidu
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Yordanka Uzunova
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, Pleven 5800, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria.
| |
Collapse
|
5
|
Levetiracetam Reduced the Basal Excitability of the Dentate Gyrus without Restoring Impaired Synaptic Plasticity in Rats with Temporal Lobe Epilepsy. Brain Sci 2020; 10:brainsci10090634. [PMID: 32933015 PMCID: PMC7565946 DOI: 10.3390/brainsci10090634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy (TLE), the most common type of focal epilepsy, affects learning and memory; these effects are thought to emerge from changes in synaptic plasticity. Levetiracetam (LEV) is a widely used antiepileptic drug that is also associated with the reversal of cognitive dysfunction. The long-lasting effect of LEV treatment and its participation in synaptic plasticity have not been explored in early chronic epilepsy. Therefore, through the measurement of evoked field potentials, this study aimed to comprehensively identify the alterations in the excitability and the short-term (depression/facilitation) and long-term synaptic plasticity (long-term potentiation, LTP) of the dentate gyrus of the hippocampus in a lithium–pilocarpine rat model of TLE, as well as their possible restoration by LEV (1 week; 300 mg/kg/day). TLE increased the population spike (PS) amplitude (input/output curve); interestingly, LEV treatment partially reduced this hyperexcitability. Furthermore, TLE augmented synaptic depression, suppressed paired-pulse facilitation, and reduced PS-LTP; however, LEV did not alleviate such alterations. Conversely, the excitatory postsynaptic potential (EPSP)-LTP of TLE rats was comparable to that of control rats and was decreased by LEV. LEV caused a long-lasting attenuation of basal hyperexcitability but did not restore impaired synaptic plasticity in the early chronic phase of TLE.
Collapse
|
6
|
de Oliveira DD, da Silva CP, Iglesias BB, Beleboni RO. Vitexin Possesses Anticonvulsant and Anxiolytic-Like Effects in Murine Animal Models. Front Pharmacol 2020; 11:1181. [PMID: 32848784 PMCID: PMC7431698 DOI: 10.3389/fphar.2020.01181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Different types of epilepsy and forms of pathological anxiety have been described as significant neurological disorders that may exist as comorbidities. Some of those disorders share the association of affected limbic areas/neuropathological triggers as well as the use of drugs for their clinical management. The aim of this work was to investigate the anticonvulsant and anxiolytic properties of the vitexin (apigenin-8-C-glucoside), since this compound is a flavonoid usually found as one of the major constituents in several medicinal plants claimed as anxiolytics and/or anticonvulsants. This investigation was performed by the use of a series of classical murine animal models of chemically induced-seizures and of anxiety-related tests (open-field, elevated plus-maze, and light-dark box tests). Here, we show that the systemic administration of vitexin (1.25; 2.5 and 5 mg/kg; i.p.) exhibited selective protection against chemically-induced seizures. Vitexin did not block seizures evoked by glutamate receptors agonists (NMDA and kainic acid), and it did not interfere with the latencies for these seizures. Conversely, the same treatments protected the animals in a dose-dependent manner against the seizures evoked by the Gabaergic antagonists picrotoxin and PTZ and rise the latency time for the first seizure on non-protected animals. The higher dose of vitexin protected 100% of animals against the tonic-clonic seizures triggered by GABA antagonists. The results from open-field, elevated plus-maze, and light-dark box tests indicated the anxiolytic properties of vitexin at similar range of doses described for the anticonvulsant action screening. Furthermore, these results pointed that vitexin did not cause sedation or locomotor impairment on animals. The selective action of vitexin against picrotoxin and PTZ may reinforce the hypothesis by which this compound acts mainly by the modulation of GABAergic neurotransmission and/or related pathways. This could be useful to explain the dual activity of vitexin as anticonvulsant and anxiolytic, and highlight the pharmacological interest on this promising flavonoid.
Collapse
Affiliation(s)
| | | | | | - Renê O. Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, Brazil
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Li Q, Zhang Y, Ge BY, Li N, Sun HL, Ntim M, Sun YP, Wu XF, Yang JY, Li S. GPR50 Distribution in the Mouse Cortex and Hippocampus. Neurochem Res 2020; 45:2312-2323. [PMID: 32696324 DOI: 10.1007/s11064-020-03089-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptor 50 (GPR50) belongs to the G protein-coupled receptor which is highly homologous with the sequence of melatonin receptor MT1 and MT2. GPR50 expression has previously been reported in many brain regions, like cortex, midbrain, pons, amygdala. But, the distribution of GPR50 in the hippocampus and cortex and the cell types expressing GPR50 is not yet clear. In this study, we examined the distribution of GPR50 in adult male mice by immunofluorescence. Our results showed that GPR50 was localized in the CA1-3 pyramidal cells and the granule cells of the dentate gyrus. GPR50 was also expressed in excitatory and inhibitory neurons. As inhibitory neurons also contain many types, we found that GPR50 was localized in some interneurons in which it was co-expressed with the calcium-binding proteins calbindin, calretinin, and parvalbumin. Besides, similar results were seen in the cortex. The widespread expression of GPR50 in the hippocampus and cortex suggests that GPR50 may be associated with synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Qifa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bi-Ying Ge
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hai- Lun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yi-Ping Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China.
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
8
|
An S, Kang C, Lee HW. Artificial Intelligence and Computational Approaches for Epilepsy. J Epilepsy Res 2020; 10:8-17. [PMID: 32983950 PMCID: PMC7494883 DOI: 10.14581/jer.20003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Studies on treatment of epilepsy have been actively conducted in multiple avenues, but there are limitations in improving its efficacy due to between-subject variability in which treatment outcomes vary from patient to patient. Accordingly, there is a growing interest in precision medicine that provides accurate diagnosis for seizure types and optimal treatment for an individual epilepsy patient. Among these approaches, computational studies making this feasible are rapidly progressing in particular and have been widely applied in epilepsy. These computational studies are being conducted in two main streams: 1) artificial intelligence-based studies implementing computational machines with specific functions, such as automatic diagnosis and prognosis prediction for an individual patient, using machine learning techniques based on large amounts of data obtained from multiple patients and 2) patient-specific modeling-based studies implementing biophysical in-silico platforms to understand pathological mechanisms and derive the optimal treatment for each patient by reproducing the brain network dynamics of the particular patient per se based on individual patient's data. These computational approaches are important as it can integrate multiple types of data acquired from patients and analysis results into a single platform. If these kinds of methods are efficiently operated, it would suggest a novel paradigm for precision medicine.
Collapse
Affiliation(s)
- Sora An
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea
| | - Chaewon Kang
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea
| | - Hyang Woon Lee
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea
| |
Collapse
|
9
|
Gelfuso EA, Reis SL, Pereira AMS, Aguiar DSR, Beleboni RO. Neuroprotective effects and improvement of learning and memory elicited by erythravine and 11α-hydroxy-erythravine against the pilocarpine model of epilepsy. Life Sci 2020; 240:117072. [PMID: 31751584 DOI: 10.1016/j.lfs.2019.117072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Deficits in cognitive functions are often observed in epileptic patients, particularly in temporal lobe epilepsy (TLE). Evidence suggests that this cognitive decline can be associated with the occurrence of focal brain lesions, especially on hippocampus and cortex regions. We previously demonstrated that the erythrinian alkaloids, (+)-erythravine and (+)-11α-hydroxy-erythravine, inhibit seizures evoked in rats by different chemoconvulsants. AIMS The current study evaluated if these alkaloids would be acting in a neuroprotective way, reducing hippocampal sclerosis, and consequently, improving learning/memory performance. MAIN METHODS Here we confirmed the anticonvulsant effect of both alkaloids by means of the pilocarpine seizure-induced model and also showed that they enhanced spatial learning of rats submitted to the Morris Water Maze test reverting the cognition deficit. Additionally, immunohistochemistry assays showed that neuronal death and glial activation were prevented by the alkaloids in the hippocampus CA1, CA3 and dentate gyrus regions at both hemispheres indistinctly 15 days after status epilepticus induction. KEY FINDINGS Our results show, for the first-time, the improvement on memory/learning elicited by these erythrinian alkaloids. Furthermore, data presented herein explain, at least partially, the cellular mechanism of action of these alkaloids. Together, (+)-erythravine and (+)-11α-hydroxy-erythravine seem to be a promising protective strategy against TLE, comprising three main aspects: neuroprotection, control of epileptic seizures and cognitive improvement. SIGNIFICANCE Moreover, our findings on neuroprotection corroborate the view that seizure frequency and severity, hippocampal lesions and memory deficits are interconnected events.
Collapse
Affiliation(s)
- Erica Aparecida Gelfuso
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Suelen Lorenzato Reis
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Renê Oliveira Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; School of Medicine, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Zhang LP, Jia Y, Huang H, Li DW, Wang YP. Clinical Classifications of Children With Psychogenic Non-epileptic Seizure. Front Pediatr 2020; 8:596781. [PMID: 33569360 PMCID: PMC7868414 DOI: 10.3389/fped.2020.596781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Objective: To analyze the clinical features of children with psychogenic non-epileptic seizures in one tertiary center in China. Methods: Clinical data including medical records and video- electroencephalograph (video-EEG) monitoring records of 88 pediatric PNES patients hospitalized in the pediatric department of Xuanwu Hospital, Beijing, China from April, 2012 to April, 2018 were collected in this study. Demographic information of patients, semiological classification, duration, and frequency of symptoms, risk factors as well as comorbidity were summarized and analyzed. Results: For semiological classification, all PNES related symptoms were divided into different categories: motor symptoms, unresponsiveness, sensory symptoms, visceral symptoms, and abnormal behaviors, among which motor symptoms were the most prevalent form. Risk factors were reviewed and categorized into two groups: persistent factors and predisposing factors, and patients were most frequently affected by the influences of families. The duration and frequency of symptoms varied substantially within PNES patients while the average time of duration was relatively longer than epilepsy as reported previously. Epilepsy was considered as the most frequent comorbidity of PNES and PNES patients misdiagnosed as epilepsy often mistreated with antiseizure medication. Significance: Our study showed that motor PNES are the most frequent seizure type. Family issues were a risk factor for PNES. Epilepsy was the most frequent co-existing neurological comorbidity.
Collapse
Affiliation(s)
- Li-Ping Zhang
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hao Huang
- Medical Records and Statistics Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Da-Wei Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Ping Wang
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Lee S, Hwang E, Lee M, Choi JH. Distinct Topographical Patterns of Spike-Wave Discharge in Transgenic and Pharmacologically Induced Absence Seizure Models. Exp Neurobiol 2019; 28:474-484. [PMID: 31495076 PMCID: PMC6751861 DOI: 10.5607/en.2019.28.4.474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Absence seizures (AS) are generalized non-convulsive seizures characterized by a brief loss of consciousness and spike-and-wave discharges (SWD) in an electroencephalogram (EEG). A number of animal models have been developed to explain the mechanisms of AS, and thalamo-cortical networks are considered to be involved. However, the cortical foci have not been well described in mouse models of AS. This study aims to use a high density EEG in pathophysiologically different AS models to compare the spatiotemporal patterns of SWDs. We used two AS models: a pharmacologically induced model (gamma-hydroxybutyric acid, GHB model) and a transgenic model (phospholipase beta4 knock-out, PLCβ4 model). The occurrences of SWDs were confirmed by thalamic recordings. The topographical analysis of SWDs showed that the onset and propagation patterns were markedly distinguishable between the two models. In the PLCβ4 model, the foci were located within the somatosensory cortex followed by propagation to the frontal cortex, whereas in the GHB model, a majority of SWDs was initiated in the prefrontal cortex followed by propagation to the posterior cortex. In addition, in the GHB model, foci were also observed in other cortical areas. This observation indicates that different cortical networks are involved in the generation of SWDs across the two models.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Oral Physiology, Faculty of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Eunjin Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Mina Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
12
|
Over-expression of 5-HT6 Receptor and Activated Jab-1/p-c-Jun Play Important Roles in Pilocarpine-Induced Seizures and Learning-Memory Impairment. J Mol Neurosci 2019; 67:388-399. [DOI: 10.1007/s12031-018-1238-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
|
13
|
Li Q, Li QQ, Jia JN, Liu ZQ, Zhou HH, Mao XY. Targeting gap junction in epilepsy: Perspectives and challenges. Biomed Pharmacother 2018; 109:57-65. [PMID: 30396092 DOI: 10.1016/j.biopha.2018.10.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Gap junctions (GJs) are multiple cellular intercellular connections that allow ions to pass directly into the cytoplasm of neighboring cells. Electrical coupling mediated by GJs plays a role in the generation of highly synchronous electrical activity. Accumulative investigations show that GJs in the brain are involved in the generation, synchronization and maintenance of seizure events. At the same time, GJ blockers exert potent curative potential on epilepsy in vivo or in vitro. This review aims to shed light on the role of GJs in epileptogenesis. Targeting GJs is likely to be served as a novel therapeutic approach on epileptic patients.
Collapse
Affiliation(s)
- Qin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Qiu-Qi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Ji-Ning Jia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|