1
|
Beltran CGG, Kriel J, Botha SM, Nolan MB, Ciccarelli A, Loos B, Gutierrez MG, Walzl G. Correlative 3D imaging method for analysing lesion architecture in susceptible mice infected with Mycobacterium tuberculosis. Dis Model Mech 2025; 18:dmm052185. [PMID: 40134379 PMCID: PMC11972079 DOI: 10.1242/dmm.052185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Tuberculosis (TB) is characterized by the formation of heterogeneous, immune-rich granulomas in the lungs. Host and pathogen factors contribute to this heterogeneity, but the molecular and cellular drivers of granuloma diversity remain inadequately understood owing to limitations in experimental techniques. In this study, we developed an approach that combines passive CLARITY (PACT)-based clearing with light-sheet fluorescence microscopy to visualize lesion architecture and lung involvement in Mycobacterium tuberculosis-infected C3HeB/FeJ mice. Three-dimensional rendering of post-mortem lungs revealed critical architectural features in lesion development that traditional thin-section imaging could not detect. Wild-type M. tuberculosis infection resulted in organized granulomas, with median sizes increasing to 3.74×108 µm3 and occupying ∼10% of the total lung volume by day 70 post-infection. In contrast, infection with the avirulent ESX-1 deletion mutant strain resulted in diffuse and sparsely organized CD11b recruitment (median size of 8.22×107 µm3), primarily located in the lung periphery and minimally involving the airways (0.23% of the total lung space). Additionally, we present a method for volumetric correlative light and electron microscopy, enabling tracking of individual immune cell populations within granulomas.
Collapse
Affiliation(s)
- Caroline G. G. Beltran
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Stefan M. Botha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| | - Margaret B. Nolan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| | | | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | | | - Gerhard Walzl
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7501, South Africa
| |
Collapse
|
2
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
3
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Delgado-Rodriguez P, Brooks CJ, Vaquero JJ, Muñoz-Barrutia A. Innovations in ex vivo Light Sheet Fluorescence Microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 168:37-51. [PMID: 34293338 DOI: 10.1016/j.pbiomolbio.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Light Sheet Fluorescence Microscopy (LSFM) has revolutionized how optical imaging of biological specimens can be performed as this technique allows to produce 3D fluorescence images of entire samples with a high spatiotemporal resolution. In this manuscript, we aim to provide readers with an overview of the field of LSFM on ex vivo samples. Recent advances in LSFM architectures have made the technique widely accessible and have improved its acquisition speed and resolution, among other features. These developments are strongly supported by quantitative analysis of the huge image volumes produced thanks to the boost in computational capacities, the advent of Deep Learning techniques, and by the combination of LSFM with other imaging modalities. Namely, LSFM allows for the characterization of biological structures, disease manifestations and drug effectivity studies. This information can ultimately serve to develop novel diagnostic procedures, treatments and even to model the organs physiology in healthy and pathological conditions.
Collapse
Affiliation(s)
- Pablo Delgado-Rodriguez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Claire Jordan Brooks
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan José Vaquero
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
5
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
6
|
Gagliano G, Nelson T, Saliba N, Vargas-Hernández S, Gustavsson AK. Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses. Front Synaptic Neurosci 2021; 13:761530. [PMID: 34899261 PMCID: PMC8651567 DOI: 10.3389/fnsyn.2021.761530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The function of the neuronal synapse depends on the dynamics and interactions of individual molecules at the nanoscale. With the development of single-molecule super-resolution microscopy over the last decades, researchers now have a powerful and versatile imaging tool for mapping the molecular mechanisms behind the biological function. However, imaging of thicker samples, such as mammalian cells and tissue, in all three dimensions is still challenging due to increased fluorescence background and imaging volumes. The combination of single-molecule imaging with light sheet illumination is an emerging approach that allows for imaging of biological samples with reduced fluorescence background, photobleaching, and photodamage. In this review, we first present a brief overview of light sheet illumination and previous super-resolution techniques used for imaging of neurons and synapses. We then provide an in-depth technical review of the fundamental concepts and the current state of the art in the fields of three-dimensional single-molecule tracking and super-resolution imaging with light sheet illumination. We review how light sheet illumination can improve single-molecule tracking and super-resolution imaging in individual neurons and synapses, and we discuss emerging perspectives and new innovations that have the potential to enable and improve single-molecule imaging in brain tissue.
Collapse
Affiliation(s)
- Gabriella Gagliano
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Tyler Nelson
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Nahima Saliba
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, Houston, TX, United States
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
- Laboratory for Nanophotonics, Rice University, Houston, TX, United States
| |
Collapse
|
7
|
Perens J, Salinas CG, Skytte JL, Roostalu U, Dahl AB, Dyrby TB, Wichern F, Barkholt P, Vrang N, Jelsing J, Hecksher-Sørensen J. An Optimized Mouse Brain Atlas for Automated Mapping and Quantification of Neuronal Activity Using iDISCO+ and Light Sheet Fluorescence Microscopy. Neuroinformatics 2021; 19:433-446. [PMID: 33063286 PMCID: PMC8233272 DOI: 10.1007/s12021-020-09490-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, the combination of whole-brain immunolabelling, light sheet fluorescence microscopy (LSFM) and subsequent registration of data with a common reference atlas, has enabled 3D visualization and quantification of fluorescent markers or tracers in the adult mouse brain. Today, the common coordinate framework version 3 developed by the Allen’s Institute of Brain Science (AIBS CCFv3), is widely used as the standard brain atlas for registration of LSFM data. However, the AIBS CCFv3 is based on histological processing and imaging modalities different from those used for LSFM imaging and consequently, the data differ in both tissue contrast and morphology. To improve the accuracy and speed by which LSFM-imaged whole-brain data can be registered and quantified, we have created an optimized digital mouse brain atlas based on immunolabelled and solvent-cleared brains. Compared to the AIBS CCFv3 atlas, our atlas resulted in faster and more accurate mapping of neuronal activity as measured by c-Fos expression, especially in the hindbrain. We further demonstrated utility of the LSFM atlas by comparing whole-brain quantitative changes in c-Fos expression following acute administration of semaglutide in lean and diet-induced obese mice. In combination with an improved algorithm for c-Fos detection, the LSFM atlas enables unbiased and computationally efficient characterization of drug effects on whole-brain neuronal activity patterns. In conclusion, we established an optimized reference atlas for more precise mapping of fluorescent markers, including c-Fos, in mouse brains processed for LSFM.
Collapse
Affiliation(s)
- Johanna Perens
- Gubra ApS, 2970, Hørsholm, Denmark.,Department of Applied Mathematics and Computer Science, Technical University Denmark, 2800, Kongens Lyngby, Denmark
| | | | | | | | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University Denmark, 2800, Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University Denmark, 2800, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Perens J, Salinas CG, Skytte JL, Roostalu U, Dahl AB, Dyrby TB, Wichern F, Barkholt P, Vrang N, Jelsing J, Hecksher-Sørensen J. An Optimized Mouse Brain Atlas for Automated Mapping and Quantification of Neuronal Activity Using iDISCO+ and Light Sheet Fluorescence Microscopy. Neuroinformatics 2021. [PMID: 33063286 DOI: 10.1007/s12021-020-09490-8/figures/5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In recent years, the combination of whole-brain immunolabelling, light sheet fluorescence microscopy (LSFM) and subsequent registration of data with a common reference atlas, has enabled 3D visualization and quantification of fluorescent markers or tracers in the adult mouse brain. Today, the common coordinate framework version 3 developed by the Allen's Institute of Brain Science (AIBS CCFv3), is widely used as the standard brain atlas for registration of LSFM data. However, the AIBS CCFv3 is based on histological processing and imaging modalities different from those used for LSFM imaging and consequently, the data differ in both tissue contrast and morphology. To improve the accuracy and speed by which LSFM-imaged whole-brain data can be registered and quantified, we have created an optimized digital mouse brain atlas based on immunolabelled and solvent-cleared brains. Compared to the AIBS CCFv3 atlas, our atlas resulted in faster and more accurate mapping of neuronal activity as measured by c-Fos expression, especially in the hindbrain. We further demonstrated utility of the LSFM atlas by comparing whole-brain quantitative changes in c-Fos expression following acute administration of semaglutide in lean and diet-induced obese mice. In combination with an improved algorithm for c-Fos detection, the LSFM atlas enables unbiased and computationally efficient characterization of drug effects on whole-brain neuronal activity patterns. In conclusion, we established an optimized reference atlas for more precise mapping of fluorescent markers, including c-Fos, in mouse brains processed for LSFM.
Collapse
Affiliation(s)
- Johanna Perens
- Gubra ApS, 2970, Hørsholm, Denmark
- Department of Applied Mathematics and Computer Science, Technical University Denmark, 2800, Kongens Lyngby, Denmark
| | | | | | | | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University Denmark, 2800, Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University Denmark, 2800, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
10
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
11
|
Kirchner KN, Li H, Denton AR, Harrod SB, Mactutus CF, Booze RM. A Hydrophobic Tissue Clearing Method for Rat Brain Tissue. J Vis Exp 2020. [PMID: 33427244 DOI: 10.3791/61821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hydrophobic tissue clearing methods are easily adjustable, fast, and low-cost procedures that allows for the study of a molecule of interest in unaltered tissue samples. Traditional immunolabeling procedures require cutting the sample into thin sections, which restricts the ability to label and examine intact structures. However, if brain tissue can remain intact during processing, structures and circuits can remain intact for the analysis. Previously established clearing methods take significant time to completely clear the tissue, and the harsh chemicals can often damage sensitive antibodies. The iDISCO method quickly and completely clears tissue, is compatible with many antibodies, and requires no special lab equipment. This technique was initially validated for the use in mice tissue, but the current protocol adapts this method to image hemispheres of control and transgenic rat brains. In addition to this, the present protocol also makes several adjustments to preexisting protocol to provide clearer images with less background staining. Antibodies for Iba-1 and tyrosine hydroxylase were validated in the HIV-1 transgenic rat and in F344/N control rats using the present hydrophobic tissue clearing method. The brain is an interwoven network, where structures work together more often than separately of one another. Analyzing the brain as a whole system as opposed to a combination of individual pieces is the greatest benefit of this whole brain clearing method.
Collapse
Affiliation(s)
- Kristin N Kirchner
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Adam R Denton
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Steven B Harrod
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina;
| |
Collapse
|
12
|
Düring DN, Dittrich F, Rocha MD, Tachibana RO, Mori C, Okanoya K, Boehringer R, Ehret B, Grewe BF, Gerber S, Ma S, Rauch M, Paterna JC, Kasper R, Gahr M, Hahnloser RHR. Fast Retrograde Access to Projection Neuron Circuits Underlying Vocal Learning in Songbirds. Cell Rep 2020; 33:108364. [PMID: 33176132 PMCID: PMC8236207 DOI: 10.1016/j.celrep.2020.108364] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the structure and function of neural circuits underlying speech and language is a vital step toward better treatments for diseases of these systems. Songbirds, among the few animal orders that share with humans the ability to learn vocalizations from a conspecific, have provided many insights into the neural mechanisms of vocal development. However, research into vocal learning circuits has been hindered by a lack of tools for rapid genetic targeting of specific neuron populations to meet the quick pace of developmental learning. Here, we present a viral tool that enables fast and efficient retrograde access to projection neuron populations. In zebra finches, Bengalese finches, canaries, and mice, we demonstrate fast retrograde labeling of cortical or dopaminergic neurons. We further demonstrate the suitability of our construct for detailed morphological analysis, for in vivo imaging of calcium activity, and for multi-color brainbow labeling. Düring et al. describe a fast and efficient viral vector to dissect structure and function of neural circuits underlying learned vocalizations in songbirds. The AAV variant provides retrograde access to projection neuron circuits, including dopaminergic pathways in songbirds and additionally in mice, and allows for retrograde calcium imaging and multispectral brainbow labeling.
Collapse
Affiliation(s)
- Daniel N Düring
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland; Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Mariana D Rocha
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Chihiro Mori
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Benjamin Ehret
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Stefan Gerber
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Shouwen Ma
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Melanie Rauch
- Viral Vector Facility, Neuroscience Center Zurich, Zurich, Switzerland
| | | | - Robert Kasper
- Imaging Facility at the Max Planck Institute of Neurobiology, Munich, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Richard H R Hahnloser
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Serafin R, Xie W, Glaser AK, Liu JTC. FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology. PLoS One 2020; 15:e0233198. [PMID: 33001995 PMCID: PMC7529223 DOI: 10.1371/journal.pone.0233198] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluorescence images into color images that mimic the appearance of standard absorptive chromogens such as hematoxylin and eosin (H&E). However, these false-coloring algorithms often require manual and iterative adjustment of parameters, with results that can be inconsistent in the presence of intensity nonuniformities within an image and/or between specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-based) rapid intensity-leveling and digital-staining package that is specifically designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&E) to the traditional H&E color space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent color-space representations that are robust to variations in staining and imaging conditions between different specimens, and (3) GPU-accelerated data processing to allow these methods to scale to large datasets. We demonstrate this platform by generating H&E-like images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional slide-based H&E histology.
Collapse
Affiliation(s)
- Robert Serafin
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Weisi Xie
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Adam K. Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Jonathan T. C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Song M. Imaging Three-Dimensional Microvascular Networks of Brain with Synchrotron Radiation Microangiography. Neurosci Bull 2020; 36:331-332. [PMID: 32239457 DOI: 10.1007/s12264-020-00491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods 2020; 334:108594. [PMID: 31945400 PMCID: PMC10674098 DOI: 10.1016/j.jneumeth.2020.108594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Modern clearing techniques enable high resolution visualization and 3D reconstruction of cell populations and their structural details throughout large biological samples, including intact organs and even entire organisms. In the past decade, these methods have become more tractable and are now being utilized to provide unforeseen insights into the complexities of the nervous system. While several iterations of optical clearing techniques have been developed, some are more suitable for specific applications than others depending on the type of specimen under study. Here we review findings from select studies utilizing clearing methods to visualize the developing, injured, and diseased nervous system within numerous model systems and species. We note trends and imbalances in the types of research questions being addressed with clearing methods across these fields in neuroscience. In addition, we discuss restrictions in applying optical clearing methods for postmortem tissue from humans and large animals and emphasize the lack in continuity between studies of these species. We aim for this review to serve as a key outline of available tissue clearing methods used successfully to address issues across neuronal development, injury/repair, and aging/disease.
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Serafin R, Xie W, Glaser AK, Liu JTC. FalseColor-Python: A rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology. PLoS One 2020. [PMID: 33001995 DOI: 10.1101/2020.05.03.074955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical adoption of these fluorescence-based techniques, software methods have been developed to convert grayscale fluorescence images into color images that mimic the appearance of standard absorptive chromogens such as hematoxylin and eosin (H&E). However, these false-coloring algorithms often require manual and iterative adjustment of parameters, with results that can be inconsistent in the presence of intensity nonuniformities within an image and/or between specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-based) rapid intensity-leveling and digital-staining package that is specifically designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&E) to the traditional H&E color space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent color-space representations that are robust to variations in staining and imaging conditions between different specimens, and (3) GPU-accelerated data processing to allow these methods to scale to large datasets. We demonstrate this platform by generating H&E-like images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional slide-based H&E histology.
Collapse
Affiliation(s)
- Robert Serafin
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Weisi Xie
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Three-Dimensional Microscopy by Milling with Ultraviolet Excitation. Sci Rep 2019; 9:14578. [PMID: 31601843 PMCID: PMC6787072 DOI: 10.1038/s41598-019-50870-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Analysis of three-dimensional biological samples is critical to understanding tissue function and the mechanisms of disease. Many chronic conditions, like neurodegenerative diseases and cancers, correlate with complex tissue changes that are difficult to explore using two-dimensional histology. While three-dimensional techniques such as confocal and light-sheet microscopy are well-established, they are time consuming, require expensive instrumentation, and are limited to small tissue volumes. Three-dimensional microscopy is therefore impractical in clinical settings and often limited to core facilities at major research institutions. There would be a tremendous benefit to providing clinicians and researchers with the ability to routinely image large three-dimensional tissue volumes at cellular resolution. In this paper, we propose an imaging methodology that enables fast and inexpensive three-dimensional imaging that can be readily integrated into current histology pipelines. This method relies on block-face imaging of paraffin-embedded samples using deep-ultraviolet excitation. The imaged surface is then ablated to reveal the next tissue section for imaging. The final image stack is then aligned and reconstructed to provide tissue models that exceed the depth and resolution achievable with modern three-dimensional imaging systems.
Collapse
|
18
|
Düring DN, Rocha MD, Dittrich F, Gahr M, Hahnloser RHR. Expansion Light Sheet Microscopy Resolves Subcellular Structures in Large Portions of the Songbird Brain. Front Neuroanat 2019; 13:2. [PMID: 30766480 PMCID: PMC6365838 DOI: 10.3389/fnana.2019.00002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Expansion microscopy and light sheet imaging (ExLSM) provide a viable alternative to existing tissue clearing and large volume imaging approaches. The analysis of intact volumes of brain tissue presents a distinct challenge in neuroscience. Recent advances in tissue clearing and light sheet microscopy have re-addressed this challenge and blossomed into a plethora of protocols with diverse advantages and disadvantages. While refractive index matching achieves near perfect transparency and allows for imaging at large depths, the resolution of cleared brains is usually limited to the micrometer range. Moreover, the often long and harsh tissue clearing protocols hinder preservation of native fluorescence and antigenicity. Here we image large expanded brain volumes of zebra finch brain tissue in commercially available light sheet microscopes. Our expansion light sheet microscopy (ExLSM) approach presents a viable alternative to many clearing and imaging methods because it improves on tissue processing times, fluorophore compatibility, and image resolution.
Collapse
Affiliation(s)
- Daniel Normen Düring
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Mariana Diales Rocha
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Falk Dittrich
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Richard Hans Robert Hahnloser
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|