1
|
Arshad F, Hassan IU, AlGhamadi JM, Naikoo GA. Biofouling-resistant nanomaterials for non-enzymatic glucose sensors: A critical review. Mater Today Bio 2025; 32:101746. [PMID: 40275958 PMCID: PMC12020842 DOI: 10.1016/j.mtbio.2025.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Biofouling is a significant concern in sensors and diagnostic applications as it results in reduced sensitivity, selectivity, and response time, false signals or noise, and ultimately causes a reduction in the sensor lifespan. This is particularly a concern while developing non-enzymatic glucose sensors (NEGS) that can be used to fabricate implantable sensors for continuous glucose monitoring. Thus, developing advanced materials solutions in the form of nanomaterials that display inherent antifouling activity is imperative. Due to their small nanosized dimensions and tunable microstructures, nanomaterials display unique physio-chemical properties that display antifouling efficiency and thus can be applied towards developing highly stable, sensitive, and selective NEGS. Through this review, we aim to explore the recent advances in the field of antifouling nanomaterials that offer promising potential to be applied towards developing NEGS. We discuss the details of various biofouling-resistant nanomaterials, including graphene and graphene oxide, carbon nanotubes, gold nanoparticles, silver nanoparticles, metal oxide nanoparticles, and polymeric nanocomposites. Further, we highlighted the possible mechanism of action involving nanomaterials in providing antifouling features in NEGS, followed by a brief discussion of the advantages and disadvantages of using nanomaterials for antifouling in developing NEGS. Finally, we concluded the article by proposing the future prospects of this promising technology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | - Israr U. Hassan
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | - Jwaher M. AlGhamadi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| |
Collapse
|
2
|
Rödig B, Funkner D, Frank T, Schürmann U, Rieder J, Kienle L, Kunz W, Kellermeier M. Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2054. [PMID: 39728590 DOI: 10.3390/nano14242054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process. To this end, solutions of soluble salts of metal cations (e.g., chlorides) and the respective anions (e.g., sodium carbonate or sulfide) are mixed in the presence of different amounts of sodium silicate at elevated pH levels. Upon mixing, metal carbonate/sulfide particles nucleate, and their subsequent growth causes a sensible decrease of pH in the vicinity. Dissolved silicate species respond to this local acidification by condensation reactions, which eventually lead to the formation of amorphous silica layers that encapsulate the metal carbonate/sulfide cores and, thus, effectively inhibit any further growth. The as-obtained carbonate nanodots can readily be converted into the corresponding metal oxides by secondary thermal treatment, during which their nanometric size is maintained. Although the described method clearly requires optimization towards actual applications, the results of this study highlight the potential of bottom-up self-assembly for the synthesis of functional nanoparticles at mild conditions.
Collapse
Affiliation(s)
- Bastian Rödig
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Diana Funkner
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Thomas Frank
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Ulrich Schürmann
- Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Julian Rieder
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Lorenz Kienle
- Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Matthias Kellermeier
- Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
3
|
Reza MS, Sharifuzzaman M, Asaduzzaman M, Islam Z, Lee Y, Kim D, Park JY. Polyaromatic Hydrocarbon-Functionalized 2D MXene-Based 3D Porous Antifouling Nanocomposite with Long Shelf Life for High-Performance Electrochemical Immunosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31610-31623. [PMID: 38853366 DOI: 10.1021/acsami.4c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Affinity-based electrochemical (AEC) biosensors have gained more attention in the field of point-of-care management. However, AEC sensing is hampered by biofouling of the electrode surface and degradation of the antifouling material. Therefore, a breakthrough in antifouling nanomaterials is crucial for the fabrication of reliable AEC biosensors. Herein, for the first time, we propose 1-pyrenebutyric acid-functionalized MXene to develop an antifouling nanocomposite to resist biofouling in the immunosensors. The nanocomposite consisted of a 3D porous network of bovine serum albumin cross-linked with glutaraldehyde with functionalized MXene as conductive nanofillers, where the inherited oxidation resistance property of functionalized MXene improved the electrochemical lifetime of the nanocomposite. On the other hand, the size-extruded porous structure of the nanocomposite inhibited the biofouling activity on the electrode surface for up to 90 days in real samples. As a proof of concept, the antifouling nanocomposite was utilized to fabricate a multiplexed immunosensor for the detection of C-reactive protein (CRP) and ferritin biomarkers. The fabricated sensor showed good selectivity over time and an excellent limit of detection for CRP and ferritin of 6.2 and 4.2 pg/mL, respectively. This research successfully demonstrated that functionalized MXene-based antifouling nanocomposites have great potential to develop high-performance and low-cost immunosensors.
Collapse
Affiliation(s)
- Md Selim Reza
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Md Asaduzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Zahidul Islam
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yeyeong Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dongyun Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Advanced Sensor and Energy Research (ASER) Laboratory, Kwangwoon University, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Wang H, Zhou S, Wang T, Zhou Z, Huang Y, Handschuh-Wang S, Li H, Zhao Y, Tang Y. Bottom-up strategy of multi-level structured boron-doped diamond for the durable electrode in water purification. J Colloid Interface Sci 2023; 652:1512-1521. [PMID: 37660608 DOI: 10.1016/j.jcis.2023.08.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/07/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Long-term exposition of electrodes to aqueous media inevitably results in biofouling and adhesion of bacteria, reducing the electrolysis efficiency of electrodes for water treatment. To ensure technically efficient antifouling of materials for durable electrodes, hierarchical micro-/nano structured boron-doped diamond (BDD) electrodes were designed and synthesized. Multi-level structured BDD was coated on titanium mesh by a bottom-up strategy, based on a combination of self-assembly seeding and hot filament chemical vapor deposition (HFCVD) growth. The morphology of the BDD coating can be controlled by manipulating the seeding density and boron doping concentration. The designed micro/nano hierarchical structure of the BDD electrode suppressed bacterial adhesion greatly and exhibited excellent anti-biofouling efficiency with an antibacterial rate of ∼ 93 %, which entails simplified self-cleaning and durable BDD-coated electrodes. The BDD-coated electrodes were employed to electrochemically treat Escherichia coli-contaminated water, killing virtually all bacteria (≥99.9 %) in 1 min. Finally, real river water was electrochemically treated, reducing the chemical oxygen demand (COD) down to 5 mg/L in 4 h. The excellent performance shows the great potential of the structured BDD electrodes for long-term water purification.
Collapse
Affiliation(s)
- Hongjin Wang
- Advanced Energy Storage Technology Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuangqing Zhou
- Advanced Energy Storage Technology Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Wang
- Advanced Energy Storage Technology Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhiye Zhou
- Advanced Energy Storage Technology Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanggen Huang
- Advanced Energy Storage Technology Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Stephan Handschuh-Wang
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Hongyu Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Zhao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
Knisz J, Eckert R, Gieg LM, Koerdt A, Lee JS, Silva ER, Skovhus TL, An Stepec BA, Wade SA. Microbiologically influenced corrosion-more than just microorganisms. FEMS Microbiol Rev 2023; 47:fuad041. [PMID: 37437902 PMCID: PMC10479746 DOI: 10.1093/femsre/fuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern that affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines are limited. A truly interdisciplinary approach, which would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review, we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods, and approaches to help solve MIC-related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field.
Collapse
Affiliation(s)
- J Knisz
- Department of Water Supply and Sewerage, Faculty of Water Sciences, University of Public Service, 6500, Baja, Hungary
| | - R Eckert
- Microbial Corrosion Consulting, LLC, Commerce Township, 48382, MI, USA
| | - L M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - A Koerdt
- Federal Institute for Materials Research and Testing (BAM), 12205, Berlin, Germany
| | - J S Lee
- Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, 39529, MS, USA
| | - E R Silva
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
- CERENA - Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - T L Skovhus
- Research Center for Built Environment, Energy, Water and Climate, VIA, University College, 8700, Horsens, Denmark
| | - B A An Stepec
- Department of Energy and Technology, NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | - S A Wade
- Bioengineering Research Group, Swinburne University of Technology, 3122, Melbourne, Australia
| |
Collapse
|
6
|
Sinha S, Kumar R, Anand J, Gupta R, Gupta A, Pant K, Dohare S, Tiwari P, Kesari KK, Krishnan S, Gupta PK. Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview. ACS APPLIED NANO MATERIALS 2023; 6:12828-12848. [DOI: 10.1021/acsanm.3c01539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Somya Sinha
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rhythm Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Akshima Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Sushil Dohare
- Department of Epidemiology, College of Public Health and Tropical Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Preeti Tiwari
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkari 1, Helsinki 00100, Finland
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Saravanan Krishnan
- Creative Carbon Laboratories Pvt Ltd., Chennai 600113, Tamil Nadu, India
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
7
|
Dobretsov S, Rittschof D. "Omics" Techniques Used in Marine Biofouling Studies. Int J Mol Sci 2023; 24:10518. [PMID: 37445696 DOI: 10.3390/ijms241310518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Biofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries. However, the settlement and growth of some biofouling species, like oysters and corals, can be desirable. Thus, it is important to understand the process of biofouling in detail. Modern "omic" techniques, such as metabolomics, metagenomics, transcriptomics, and proteomics, provide unique opportunities to study biofouling organisms and communities and investigate their metabolites and environmental interactions. In this review, we analyze the recent publications that employ metagenomic, metabolomic, and proteomic techniques for the investigation of biofouling and biofouling organisms. Specific emphasis is given to metagenomics, proteomics and publications using combinations of different "omics" techniques. Finally, this review presents the future outlook for the use of "omics" techniques in marine biofouling studies. Like all trans-disciplinary research, environmental "omics" is in its infancy and will advance rapidly as researchers develop the necessary expertise, theory, and technology.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123, Muscat P.O. Box 34, Oman
| | - Daniel Rittschof
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| |
Collapse
|
8
|
Basumatary IB, Mukherjee A, Kumar S. Chitosan-based composite films containing eugenol nanoemulsion, ZnO nanoparticles and Aloe vera gel for active food packaging. Int J Biol Macromol 2023; 242:124826. [PMID: 37178889 DOI: 10.1016/j.ijbiomac.2023.124826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based food packaging films are gaining increasing popularity, as consumers' demands for sustainable alternatives and environmental concerns associated with synthetic plastic packaging grow. In this research work, chitosan-based active antimicrobial films reinforced with eugenol nanoemulsion (EuNE), Aloe vera gel, and zinc oxide nanoparticles (ZnONPs) were fabricated and characterized for their solubility, microstructure, optical properties, antimicrobial and antioxidant activities. The rate of release of EuNE from the fabricated films was also evaluated to determine active nature of the films. The EuNE droplet size was about 200 nm, and they were uniformly distributed throughout the film matrices. Incorporation of EuNE in chitosan drastically improved UV-light barrier property of the fabricated composite film by 3 to 6 folds, while maintaining their transparency. The XRD spectra of the fabricated films showed good compatibility between the chitosan and the incorporated active agents. The incorporation of ZnONPs significantly improved their antibacterial properties against foodborne bacteria and tensile strength about 2-folds, whereas incorporation of EuNE and AVG improved DPPH scavenging activities of the chitosan film up to 95 %, respectively.
Collapse
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| |
Collapse
|
9
|
Sousa-Cardoso F, Teixeira-Santos R, Campos AF, Lima M, Gomes LC, Soares OSGP, Mergulhão FJ. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:381. [PMID: 36770342 PMCID: PMC9919625 DOI: 10.3390/nano13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Due to its several economic and ecological consequences, biofouling is a widely recognized concern in the marine sector. The search for non-biocide-release antifouling coatings has been on the rise, with carbon-nanocoated surfaces showing promising activity. This work aimed to study the impact of pristine graphene nanoplatelets (GNP) on biofilm development through the representative marine bacteria Cobetia marina and to investigate the antibacterial mechanisms of action of this material. For this purpose, a flow cytometric analysis was performed and a GNP/polydimethylsiloxane (PDMS) surface containing 5 wt% GNP (G5/PDMS) was produced, characterized, and assessed regarding its biofilm mitigation potential over 42 days in controlled hydrodynamic conditions that mimic marine environments. Flow cytometry revealed membrane damage, greater metabolic activity, and endogenous reactive oxygen species (ROS) production by C. marina when exposed to GNP 5% (w/v) for 24 h. In addition, C. marina biofilms formed on G5/PDMS showed consistently lower cell count and thickness (up to 43% reductions) than PDMS. Biofilm architecture analysis indicated that mature biofilms developed on the graphene-based surface had fewer empty spaces (34% reduction) and reduced biovolume (25% reduction) compared to PDMS. Overall, the GNP-based surface inhibited C. marina biofilm development, showing promising potential as a marine antifouling coating.
Collapse
Affiliation(s)
- Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Francisca Campos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11081102. [PMID: 36009971 PMCID: PMC9404944 DOI: 10.3390/antibiotics11081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/01/2023] Open
Abstract
Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis. In addition, the retrieved publications were subjected to a quality assessment process based on an adapted Methodological Index for Non-Randomized Studies (MINORS) scale. In general, this review demonstrated the promising antifouling performance of these carbon nanomaterials in marine environments. Further, results from the revised studies suggested that functionalized GP- and CNTs-based marine coatings exhibited improved antifouling performance compared to these materials in pristine forms. Thanks to their high self-cleaning and enhanced antimicrobial properties, as well as durability, these functionalized composites showed outstanding results in protecting submerged surfaces from the settlement of fouling organisms in marine settings. Overall, these findings can pave the way for the development of new carbon-engineered surfaces capable of preventing marine biofouling.
Collapse
|