1
|
Barbosa-Méndez S, Salazar-Juárez A. Mirtazapine decreased cocaine-induced c-fos expression and dopamine release in rats. Front Psychiatry 2024; 15:1428730. [PMID: 39188520 PMCID: PMC11346032 DOI: 10.3389/fpsyt.2024.1428730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Chronic cocaine exposure induces an increase in dopamine release and an increase in the expression of the Fos protein in the rat striatum. It has been suggested that both are necessary for the expression of cocaine-induced alterations in behavior and neural circuitry. Mirtazapine dosing attenuated the cocaine-induced psychomotor and reinforcer effects. Methods The study evaluates the effect of chronic dosing of mirtazapine on cocaine-induced extracellular dopamine levels and Fos protein expression in rats. Male Wistar rats received cocaine (10 mg/Kg; i.p.) during the induction and expression of locomotor sensitization. The mirtazapine (30 mg/Kg; MIR), was administered 30 minutes before cocaine during the cocaine withdrawal. After each treatment, the locomotor activity was recorded for 30 minutes. Animals were sacrificed after treatment administration. Dopamine levels were determined by high-performance liquid chromatographic (HPLC) in the ventral striatum, the prefrontal cortex (PFC), and the ventral tegmental area (VTA) in animals treated with mirtazapine and cocaine. The quantification of c-fos immunoreactive cells was carried out by stereology analysis. Results Mirtazapine generated a decrease in cocaine-induced locomotor activity. In addition, mirtazapine decreased the amount of cocaine-induced dopamine and the number of cells immunoreactive to the Fos protein in the striatum, PFC, and VTA. Discussion These data suggest that mirtazapine could prevent the consolidation of changes in behavior and the cocaine-induced reorganization of neuronal circuits. It would explain the mirtazapine-induced effects on cocaine behavioral sensitization. Thus, these data together could support its possible use for the treatment of patients with cocaine use disorder.
Collapse
|
2
|
Abstract
BACKGROUND Nicotine is the major psychoactive component of tobacco. A number of pharmacological therapies have been evaluated, with poor results. Given the lack of success of these therapies, several authors have proposed alternative therapeutic strategies. One of these is the use of antidepressant drugs that may have a specific effect on the neural pathways or receptors underlying nicotine addiction. Mirtazapine is an antagonist of α2 NE receptors (noradrenergic receptor), 5-HT2A/C and 5-HT3 receptors and has demonstrated efficacy in reducing behavioral effects induced by drugs of abuse in human and animal models. AIMS In this study, we evaluated the effect of chronic dosing of mirtazapine during extinction on the re-acquisition of nicotine-seeking in rodents. METHODS We used the nicotine self-administration paradigm to assess the effects of mirtazapine on rats trained to self-administer nicotine under a pharmacological fixed-ratio schedule. Mirtazapine (30 mg/kg, i.p.) was administered during extinction. RESULTS In this work, we found that mirtazapine attenuates the re-acquisition of nicotine-seeking responses. CONCLUSIONS These results support the use of mirtazapine in clinical controlled trials as a useful therapy that prolongs and increases rates of preventing relapse into nicotine intake in humans.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, México
| |
Collapse
|
3
|
Li X, Huang M, Yang L, Guo N, Yang X, Zhang Z, Bai M, Ge L, Zhou X, Li Y, Bai J. Overexpression of Thioredoxin-1 Blocks Morphine-Induced Conditioned Place Preference Through Regulating the Interaction of γ-Aminobutyric Acid and Dopamine Systems. Front Neurol 2018; 9:309. [PMID: 29770121 PMCID: PMC5941988 DOI: 10.3389/fneur.2018.00309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 01/03/2023] Open
Abstract
Morphine is one kind of opioid, which is currently the most effective widely utilized pain relieving pharmaceutical. Long-term administration of morphine leads to dependence and addiction. Thioredoxin-1 (Trx-1) is an important redox regulating protein and works as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, whether overexpression of Trx-1 can block morphine-induced conditioned place preference (CPP) in mice is still unknown. In this study, we first examined whether overexpression of Trx-1 affects the CPP after morphine training and further examined the dopamine (DA) and γ-aminobutyric acid (GABA) systems involved in rewarding effects. Our results showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic (TG) mice. Trx-1 expression was induced by morphine in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in wild-type (WT) mice, which was not induced in Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH) and D1 were induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA level and expression of GABABR were decreased by morphine, which were restored in Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine through regulating the expressions of D1, TH, and GABABR in the VTA and NAc.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Mengbing Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Lihua Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ningning Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Yang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Zhimin Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ming Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Lu Ge
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xiaoshuang Zhou
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Mirtazapine impairs acquisition and reinstatement of cocaine-induced place preference in rats. Eur J Pharmacol 2018; 820:183-190. [DOI: 10.1016/j.ejphar.2017.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
5
|
Synergistic interactions between mirtazapine and prazosin prevent the induction and expression of behavioral sensitization to cocaine in rats. Physiol Behav 2017; 180:137-145. [DOI: 10.1016/j.physbeh.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
|
6
|
Barbosa-Méndez S, Jurado N, Matus-Ortega M, Martiñon S, Heinze G, Salazar-Juárez A. Mirtazapine attenuates the expression of nicotine-induced locomotor sensitization in rats. Eur J Pharmacol 2017; 812:28-37. [DOI: 10.1016/j.ejphar.2017.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022]
|
7
|
Mirtazapine attenuates cocaine seeking in rats. J Psychiatr Res 2017; 92:38-46. [PMID: 28391178 DOI: 10.1016/j.jpsychires.2017.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Relapse to cocaine use is a major problem in the clinical treatment of cocaine addiction. Antidepressants have been studied for their therapeutic potential to treat cocaine use disorder. Research has suggested that antidepressants attenuate both drug craving and the re-acquisition of drug-seeking and drug-taking behaviors. This study examined the efficacy of mirtazapine, an antidepressant/anxiolytic, in decreasing cocaine seeking in rats. METHODS We used the cocaine self-administration paradigm to assess the effects of mirtazapine on rats trained to self-administer cocaine or food under a fixed-ratio schedule. Mirtazapine (30 mg/kg, i.p.) was administered during extinction. RESULTS Mirtazapine significantly attenuated non-reinforced lever-press responses during extinction. Moreover, the mirtazapine dosed for 30 days during extinction produced sustained attenuation of lever-press responses during re-acquisition of cocaine self-administration, without changing food-seeking behavior. Our results showed that mirtazapine attenuated the re-acquisition of cocaine-seeking responses. CONCLUSION Our study pointed to the efficacy of mirtazapine in reducing the risk of drug relapse during abstinence, suggesting for its potential use as a novel pharmacological agent to treat drug abuse.
Collapse
|
8
|
Barbosa-Méndez S, Matus-Ortega M, Flores-Zamora A, Jurado N, Salazar-Juárez A. Dose- and time-dependent effects of mirtazapine on the expression of cocaine-induced behavioral sensitization in rats. Psychiatry Res 2017; 254:301-310. [PMID: 28501735 DOI: 10.1016/j.psychres.2017.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Relapse to cocaine use is a major problem in the clinical treatment of cocaine dependence. Antidepressant medications have been studied as potential therapeutic drugs to relieve a cocaine dependence disorder. Mirtazapine is an antidepressant implicated in reducing behavioral alterations induced by drugs of abuse. We have reported elsewhere that 30mg/kg mirtazapine administered for 30 days during cocaine extinction significantly attenuated the induction and expression of cocaine-induced locomotor sensitization and decreased the duration of the cocaine-induced locomotor effect. This study focused on exploring whether different mirtazapine dosing regimens could optimize and/or improve the effect of 30mg/kg mirtazapine administered for 30 days on cocaine-induced locomotor activity during the expression phase of behavioral sensitization. Our study revealed that the daily dosing regimen with a fixed dose of mirtazapine (30mg/kg ip) over 60 days improved the decrease in cocaine-induced locomotor activity and behavioral sensitization obtained by dosing of 30mg mirtazapine for 30 days. In addition, it showed that a dosing regimen of 30mg/Kg mirtazapine for 30 days managed to reduce cocaine toxicity. These results suggested that dosage of mirtazapine for 30 consecutive days may be an effective therapy.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Maura Matus-Ortega
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anabel Flores-Zamora
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Noe Jurado
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alberto Salazar-Juárez
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
9
|
Persons AL, Tedford SE, Napier TC. Mirtazapine and ketanserin alter preference for gambling-like schedules of reinforcement in rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:178-184. [PMID: 28412411 PMCID: PMC5656013 DOI: 10.1016/j.pnpbp.2017.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
Drug and behavioral addictions have overlapping features, e.g., both manifest preference for larger, albeit costlier, reinforcement options in cost/benefit decision-making tasks. Our prior work revealed that the mixed-function serotonergic compound, mirtazapine, attenuates behaviors by rats motivated by abused drugs. To extend this work to behavioral addictions, here we determined if mirtazapine and/or ketanserin, another mixed-function serotonin-acting compound, can alter decision-making in rats that is independent of drug (or food)-motivated reward. Accordingly, we developed a novel variable-ratio task in rats wherein intracranial self-stimulation was used as the positive reinforcer. Using lever pressing for various levels of brain stimulation, the operant task provided choices between a small brain stimulation current delivered on a fixed-ratio schedule (i.e., a predictable reward) and a large brain stimulation delivered following an unpredictable number of responses (i.e., a variable-ratio schedule). This task allowed for demonstration of individualized preference and detection of shifts in motivational influences during a pharmacological treatment. Once baseline preference was established, we determined that pretreatment with mirtazapine or ketanserin significantly decreased preference for the large reinforcer presented after gambling-like schedules of reinforcement. When the rats were tested the next day without drug, preference for the unpredictable large reinforcer option was restored. These data demonstrate that mirtazapine and ketanserin can reduce preference for larger, costlier reinforcement options, and illustrate the potential for these drugs to alter behavior.
Collapse
Affiliation(s)
- Amanda L. Persons
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL,Dept. of Physician Assistant Studies, Rush University Medical Center, Chicago, IL,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL
| | - Stephanie E. Tedford
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL
| | - T. Celeste Napier
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL,Dept. of Psychiatry, Rush University Medical Center, Chicago, IL,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL
| |
Collapse
|
10
|
Holtz NA, Tedford SE, Persons AL, Grasso SA, Napier TC. Pharmacologically distinct pramipexole-mediated akinesia vs. risk-taking in a rat model of Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:77-84. [PMID: 27216282 PMCID: PMC5410378 DOI: 10.1016/j.pnpbp.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
Pramipexole and ropinirole are dopamine agonists that are efficacious in treating motor disturbances of neuropathologies, e.g., Parkinson's disease and restless legs syndrome. A significant portion of treated patients develop impulsive/compulsive behaviors. Current treatment is dose reduction or switching to an alternative dopamine replacement, both of which can undermine the motor benefits. Needed is a preclinical model that can assist in identifying adjunct treatments to dopamine agonist therapy that reduce impulsive/compulsive behaviors without interfering with motor benefits of the dopamine agonist. Toward that objective, the current study implemented a rat model of Parkinson's disease to behaviorally profile chronically administered pramipexole. This was accomplished with male Sprague-Dawley rats wherein (i) 6-hydroxydopamine-induced lesions of the dorsolateral striatum produced Parkinson's disease-like akinesia, measured in the forelimbs, (ii) intracranial self-stimulation-mediated probability discounting indicated impulsivity/risk-taking, and (iii) two doses of pramipexole were continuously administered for 14-28days via osmotic minipumps to mirror the chronic, stable exposure achieved with extended release formulations. The atypical antidepressant, mirtazapine, is known to reduce behaviors associated with drug addiction in rats; thus, we demonstrated model utility here by determining the effects of mirtazapine on pramipexole-induced motor improvements versus probability discounting. We observed that forelimb akinesia subsequent to striatal lesions was attenuated by both pramipexole doses tested (0.3 and 1.2mg/kg/day) within 4h of pump implant dispensing 0.3mg/kg/day and 1h by 1.2mg/kg/day. By contrast, 12-14days of infusion with 0.3mg/kg/day did not alter discounting, but increases were obtained with 1.2mg/kg/day pramipexole, with 67% of 1.2mg/kg/day-treated rats meeting categorical criteria for 'high risk-taking'. Insertion of a second minipump delivering mirtazapine did not alter motor function during 14days of co-administration with pramipexole, but was sufficient to attenuate risk-taking. These outcomes revealed distinct probability discounting and anti-akinesia profiles for pramipexole, indicating that pharmacotherapy, (e.g., mirtazapine treatments), can be developed that reduce risk-taking while leaving motor benefits intact.
Collapse
Affiliation(s)
- Nathan A. Holtz
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Stephanie E. Tedford
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Amanda L. Persons
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Salvatore A. Grasso
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - T. Celeste Napier
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Dept. of Psychiatry, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
11
|
Salazar-Juárez A, Barbosa-Méndez S, Jurado N, Hernández-Miramontes R, Leff P, Antón B. Mirtazapine prevents induction and expression of cocaine-induced behavioral sensitization in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68:15-24. [PMID: 26922897 DOI: 10.1016/j.pnpbp.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 01/07/2023]
Abstract
Cocaine abuse is a major health problem worldwide. Treatment based on both 5-HT2A/C and 5-HT3 receptor antagonists attenuate not only the effects of cocaine abuse but also the incentive/motivational effect related to cocaine-paired cues. Mirtazapine, an antagonist of postsynaptic α2-adrenergic, 5-HT2A/C and 5HT3 receptors and inverse agonist of the 5-HT2C receptor, has been shown to effectively modify, at the preclinical and clinical levels, various behavioral alterations induced by drugs abuse. Therefore, it is important to assess whether chronic dosing of mirtazapine alters locomotor effects of cocaine as well as induction and expression of cocaine sensitization. Our results reveal that a daily mirtazapine regimen administered for 30days effectively induces a significant attenuation of cocaine-dependent locomotor activity and as well as the induction and expression of behavioral sensitization. These results suggest that mirtazapine may be used as a potentially effective therapy to attenuate induction and expression of cocaine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Alberto Salazar-Juárez
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Susana Barbosa-Méndez
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Noe Jurado
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Ricardo Hernández-Miramontes
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Philippe Leff
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Benito Antón
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico.
| |
Collapse
|
12
|
Rudzinskas SA, Mong JA. Androgen-primed castrate males are sufficient for methamphetamine-facilitated increases in proceptive behavior in female rats. Horm Behav 2016; 78:52-9. [PMID: 26497407 PMCID: PMC4718754 DOI: 10.1016/j.yhbeh.2015.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
Methamphetamine (MA) is a psychomotor stimulant associated with increases in sex drive in both men and women. Women, however, are far more likely to face social disadvantages as a consequence of MA use, and their increased sexual motivation poses additional health concerns such as unplanned pregnancies. To better understand the mechanisms underlying MA-facilitated sexual motivation in females, we previously established a rodent model where a "binge"-type administration paradigm of MA to sexually receptive female rats significantly increases proceptive behavior in the presence of a sexually active, gonadally-intact male. Our previous work with this model has led us to consider whether the increases in proceptive behavior are truly indicative of increased sexual motivation, or instead a consequence of heightened motor responsivity. Here, we test whether MA-induced increases in proceptive behaviors are specific to a sexually relevant stimulus. Females' sexual, social, exploratory behaviors, and interaction times were scored during the exposure to stimulus males, including castrates, and dihydrotestosterone (DHT)-treated castrates. MA-treated females demonstrated significant increases in proceptive behaviors toward DHT-treated castrate males but not toward castrate males. While the non-MA-treated females did display proceptive behavior, there was no significant difference between behaviors elicited by DHT-CX males compared to CX males. Our results support the hypothesis that MA facilitates proceptive behavior only in response to specific, androgen mediated sexually-relevant cues.
Collapse
Affiliation(s)
- Sarah A Rudzinskas
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | - Jessica A Mong
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Napier TC, Herrold AA, de Wit H. Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev 2013; 37:2081-6. [PMID: 23680702 PMCID: PMC3815959 DOI: 10.1016/j.neubiorev.2013.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 12/26/2022]
Abstract
Stimuli, including contexts, which predict the availability or onset of a drug effect, can acquire conditioned incentive motivational properties. These conditioned properties endure after withdrawal, and can promote drug-seeking which may result in relapse. Conditioned place preference (CPP) assesses the associations between drugs and the context in which they are experienced. Here, we review the potential utility of CPP procedures in rodents and humans to evaluate medications that target conditioned drug-seeking responses. We discuss the translational potential of the CPP procedure from rodents to humans, and review findings with FDA-approved treatments that support the use of CPP to develop relapse-reduction medications. We also discuss challenges and methodological questions in applying the CPP procedure to this purpose. We argue that an efficient and valid CPP procedure in humans may reduce the burden of full clinical trials with drug-abusing patients that are currently required for testing promising treatments.
Collapse
Affiliation(s)
- T Celeste Napier
- Department of Pharmacology and Center for Compulsive Behaviors and Addiction, Rush University, Chicago, IL, United States.
| | | | | |
Collapse
|
14
|
Graves SM, Rafeyan R, Watts J, Napier TC. Mirtazapine, and mirtazapine-like compounds as possible pharmacotherapy for substance abuse disorders: evidence from the bench and the bedside. Pharmacol Ther 2012; 136:343-53. [PMID: 22960395 DOI: 10.1016/j.pharmthera.2012.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Understanding substance use disorders (SUDs) and the problems associated with abstinence has grown in recent years. Nonetheless, highly efficacious treatment targeting relapse prevention has remained elusive, and there remains no FDA-approved pharmacotherapy for psychostimulant dependence. Preclinical and clinical investigations assessing the utility of classical antidepressants, which block monoamine reuptake, show mixed and often contradictory results. Mirtazapine (Remeron®) is a unique FDA-approved antidepressant, with negligible affinity for reuptake proteins, indirectly augments monoamine transmission presumably through antagonist activity at multiple receptors including the norepinephrine (NE)(α2), and serotonin (5-HT)(2A/C) receptors. Historically, mirtazapine was also considered to be a 5-HT(2C) antagonist, but recent evidence indicates that mirtazapine is an inverse agonist at this receptor subtype. Suggesting a promising role for mixed-action serotonergic drugs for addiction pharmacotherapy, mirtazapine attenuates psychostimulant-induced behaviors in several rodent models of substance abuse, and antagonizes methamphetamine-induced biochemical and electrophysiological alterations in rats. Preclinical findings are confirmed through published case studies documenting successful outcomes with mirtazapine therapy across a number of SUDs. To date, a large scale clinical trial assessing the utility of mirtazapine in substance abuse pharmacotherapy has yet to be conducted. However, as reviewed here, accumulating preclinical and clinical evidence argues that mirtazapine, or compounds that emulate aspects of its pharmacological profile, may prove useful in helping treat addictions.
Collapse
Affiliation(s)
- Steven M Graves
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | | | | | | |
Collapse
|
15
|
Graves SM, Napier TC. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats. BMC Neurosci 2012; 13:65. [PMID: 22697313 PMCID: PMC3441362 DOI: 10.1186/1471-2202-13-65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
Background Methamphetamine (meth) dependence presents a substantial socioeconomic burden. Despite the need, there is no FDA-approved pharmacotherapy for psychostimulant dependence. We consider 5-HT2C receptors as viable therapeutic targets. We recently revealed that the atypical antidepressant, mirtazapine, attenuates meth-seeking in a rodent model of human substance abuse. Mirtazapine historically has been considered to be an antagonist at 5-HT2C receptors, but more recently shown to exhibit inverse agonism at constitutively active 5-HT2C receptors. To help distinguish the roles for antagonism vs. inverse agonism, here we explored the ability of a more selective 5-HT2C inverse agonist, SB 206553 to attenuate meth-seeking behavior, and compared its effects to those obtained with 5-HT2C antagonists, SDZ Ser 082 and SB 242084. To do so, rats were trained to self-administer meth and tested for seeking-like behavior in cue reactivity sessions consisting of contingently presenting meth-associated cues without meth reinforcement. We also explored motor function to determine the influence of SB 206553 and SDZ Ser 082 on motor activity in the presence and absence of meth. Results Like mirtazapine, pretreatment with SB 206553 (1.0, 5.0, and 10.0 mg/kg), attenuated meth-seeking. In contrast, the antagonists, SDZ Ser 082 (0.1, 0.3, and 1.0 mg/kg) and SB 242084 (3.0 mg/kg) had no effect on cue reactivity (CR). SB 242084 (3.0 mg/kg) failed to attenuate the effects of 5.0 and 10 mg/kg SB 206553 on CR. Motor function was largely unaltered by the 5-HT2C ligands; however, SB 206553, at the highest dose tested (10.0 mg/kg), attenuated meth-induced rearing behavior. Conclusions The lack of effect by 5-HT2C antagonists suggests that meth-seeking and meth-evoked motor activity are independent of endogenous 5-HT acting at 5-HT2C receptors. While SB 206553 dramatically impacted meth-evoked behaviors it is unclear whether the observed effects were 5-HT2C receptor mediated. Thus, SB 206553 deserves further attention in the study of psychostimulant abuse disorders.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology Rush, University Medical Center, 1735 W Harrison Street, Cohn Research Building, Chicago, IL 60612, USA.
| | | |
Collapse
|