1
|
Rahnemayan S, Mehdizadehfar E, Fathalizadeh A. Modulating Cognitive Function with Antihypertensive Medications: a Comprehensive Systematic Review On FMRI Studies. Clin Neuroradiol 2025:10.1007/s00062-024-01494-0. [PMID: 39833317 DOI: 10.1007/s00062-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Hypertension (HTN) is a prevalent cardiovascular condition associated with cognitive impairments, including memory deficits and attention lapses. Understanding the neural mechanisms underlying HTN-related cognitive dysfunction is crucial for optimizing treatment strategies. METHOD A systematic review was conducted to explore the impact of antihypertensive medications on cognition, focusing on memory, attention, and emotion processing using functional magnetic resonance imaging (fMRI). Searches were performed in PubMed and Scopus up to March 10, 2024, with no language restrictions. RESULTS A total of 108 articles were identified, of which 12 systematic reviews and meta-analyses met the inclusion criteria. Included studies investigated various antihypertensive drugs, including losartan, propranolol, spironolactone, and telmisartan, and their effects on cognitive processes. Losartan improved negative memory encoding and facilitated fear extinction via hippocampal and prefrontal modulation. Propranolol disrupted fear reconsolidation and reduced emotional memory retrieval, affecting the amygdala and hippocampus. Spironolactone prevented stress-induced memory shifts in the amygdala. Findings indicated distinct impacts of these medications on memory encoding, fear extinction, and stress-induced memory modulation, as evidenced by alterations in neural activity patterns observed on fMRI. CONCLUSION Antihypertensive medications, such as losartan and propranolol, demonstrate potential in modulating memory, fear-related memory reconsolidation, and stress-induced memory modulation, highlighting their therapeutic implications for conditions like posttraumatic stress disorder (PTSD) and anxiety disorders. This review underscores the importance of fMRI studies in elucidating the neural correlates of HTN-related cognitive impairments and optimizing treatment approaches.
Collapse
Affiliation(s)
- Sama Rahnemayan
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Fathalizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Su T, Chen B, Yang M, Wang Q, Zhou H, Zhang M, Wu Z, Lin G, Wang D, Li Y, Zhong X, Ning Y. Disrupted functional connectivity of the habenula links psychomotor retardation and deficit of verbal fluency and working memory in late-life depression. CNS Neurosci Ther 2024; 30:e14490. [PMID: 37804094 PMCID: PMC11017447 DOI: 10.1111/cns.14490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Functional abnormalities of the habenula in patients with depression have been demonstrated in an increasing number of studies, and the habenula is involved in cognitive processing. However, whether patients with late-life depression (LLD) exhibit disrupted habenular functional connectivity (FC) and whether habenular FC mediates the relationship between depressive symptoms and cognitive impairment remain unclear. METHODS Overall, 127 patients with LLD and 75 healthy controls were recruited. The static and dynamic FC between the habenula and the whole brain was compared between LLD patients and healthy controls, and the relationships of habenular FC with depressive symptoms and cognitive impairment were explored by correlation and mediation analyses. RESULTS Compared with the controls, patients with LLD exhibited decreased static FC between the right habenula and bilateral inferior frontal gyrus (IFG); there was no significant difference in dynamic FC of the habenula between the two groups. Additionally, the decreased static FC between the right habenula and IFG was associated with more severe depressive symptoms (especially psychomotor retardation) and cognitive impairment (language, memory, and visuospatial skills). Last, static FC between the right habenula and left IFG partially mediated the relationship between depressive symptoms (especially psychomotor retardation) and cognitive impairment (verbal fluency and working memory). CONCLUSIONS Patients with LLD exhibited decreased static FC between the habenula and IFG but intact dynamic FC of the habenula. This decreased static FC mediated the relationship between depressive symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Ting Su
- Department of RadiologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Ben Chen
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Mingfeng Yang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Qiang Wang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huarong Zhou
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Min Zhang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhangying Wu
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gaohong Lin
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | | - Yue Li
- Guangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Zhong
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuping Ning
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical UniversityGuangzhouChina
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
| |
Collapse
|
3
|
Huang CC, Chen PH, Tsai CC, Chiang HF, Hsieh CC, Chen TL, Liao WH, Chen YL, Wang JJ. Diffusion and structural MRI as potential biomarkers in people with Parkinson's disease and cognitive impairment. Eur Radiol 2024; 34:126-135. [PMID: 37572194 DOI: 10.1007/s00330-023-10012-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVE To explore the neuroimage change in Parkinson's disease (PD) patients with cognitive impairments, this study investigated the correlation between plasma biomarkers and morphological brain changes in patients with normal cognition and mild cognitive impairment. The objective was to identify the potential target deposition regions of the plasma biomarkers and to search for the relevant early neuroimaging biomarkers on the basis of different cognitive domains. METHODS Structural brain MRI and diffusion weighted images were analyzed from 49 eligible PD participants (male/female: 27/22; mean age: 73.4 ± 8.5 years) from a retrospective analysis. Plasma levels of α-synuclein, amyloid beta peptide, and total tau were collected. A comprehensive neuropsychological assessment of the general and specific cognitive domains was performed. Difference between PD patients with normal cognition and impairment was examined. Regression analysis was performed to evaluate the correlation between image-derived index and plasma biomarkers or neuropsychological assessments. RESULTS Significant correlation was found between plasma Aβ-42 level and fractional anisotropy of the middle occipital, angular, and middle temporal gyri of the left brain, as well as plasma T-tau level and the surface area of the isthmus or the average thickness of the posterior part of right cingulate gyrus. Visuospatial and executive function is positively correlated with axial diffusivity in bilateral cingulate gyri. CONCLUSION In nondemented PD patients, the target regions for plasma deposition might be located in the cingulate, middle occipital, angular, and middle temporal gyri. Changes from multiple brain regions can be correlated to the performance of different cognitive domains. CLINICAL RELEVANCE STATEMENT Cognitive impairment in Parkinson's disease is primarily linked to biomarkers associated with Alzheimer's disease rather than those related to Parkinson's disease and resembles the frontal variant of Alzheimer's disease, which may guide management strategies for cognitive impairment in Parkinson's disease. KEY POINTS • Fractional anisotropy, surface area, and thickness in the cingulate, middle occipital, angular, and middle temporal gyri can be significantly correlated with plasma Aβ-42 and T-tau level. • Axial diffusivity in the cingulate gyri was correlated with visuospatial and executive function. • The pattern of cognitive impairment in Parkinson's disease can be similar to the frontal variant than typical Alzheimer's disease.
Collapse
Affiliation(s)
- Chun-Chao Huang
- Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Pei-Hao Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Neurology, MacKay Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Chien Tsai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Fan Chiang
- Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Cheng-Chih Hsieh
- Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ting-Lin Chen
- Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Hsin Liao
- Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Xu X, Xin F, Liu C, Chen Y, Yao S, Zhou X, Zhou F, Huang Y, Dai J, Wang J, Zou Z, Kendrick KM, Zhou B, Becker B. Disorder- and cognitive demand-specific neurofunctional alterations during social emotional working memory in generalized anxiety disorder and major depressive disorder. J Affect Disord 2022; 308:98-105. [PMID: 35427713 DOI: 10.1016/j.jad.2022.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Generalized Anxiety Disorder (GAD) and Major Depressive Disorder (MDD) are both characterized by cognitive and social impairments. Determining disorder-specific neurobiological alterations in GAD and MDD by means of functional magnetic resonance imaging (fMRI) may promote determination of precise diagnostic markers. METHODS This study aimed to examine disorder-specific behavioral and neural alterations at the intersection of social and cognitive processing in treatment-naïve first-episode GAD (n = 35) and MDD (n = 37) patients compared to healthy controls (n = 35) by employing a social-emotional n-back fMRI paradigm. RESULTS No behavioral differences between patients and healthy controls were observed. However, GAD patients exhibited decreased bilateral dorsomedial prefrontal cortex (dmPFC) engagement during the 0-back condition yet increased dmPFC engagement during the 1-back condition compared to MDD and healthy participants. In contrast, MDD patients exhibited increased dmPFC-insula coupling during 0-back, yet decreased coupling during 1-back, compared to GAD and healthy participants. Dimensional symptom-load analysis confirmed that increased dmPFC-insula connectivity during 0-back was positively associated with depressive symptom load. LIMITATIONS The moderate sample size in the present study did not allow us to further explore gender differences. In addition, some patients exhibited GAD and MDD comorbidity according to the M.I.N.I. interview. Finally, the paradigm we used did not allow to further disentangle emotion-specific effects on working memory. CONCLUSIONS These findings suggest that the dmPFC engaged in integrating affective and cognitive components and self-other processing exhibits GAD-specific neurofunctional dysregulations whereas functional dmPFC communication with the insula, a region involved in salience processing, may represent an MDD-specific neurofunctional deficit.
Collapse
Affiliation(s)
- Xiaolei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; School of Psychology, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Congcong Liu
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yuanshu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yulan Huang
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Chengdu Mental Health Center, The Fourth People's Hospital of Chengdu, Chengdu, Sichuan 610036, China
| | - Jinyu Wang
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Zhili Zou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Bo Zhou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| |
Collapse
|
5
|
Varela-López B, Cruz-Gómez ÁJ, Lojo-Seoane C, Díaz F, Pereiro A, Zurrón M, Lindín M, Galdo-Álvarez S. Cognitive reserve, neurocognitive performance, and high-order resting-state networks in cognitively unimpaired aging. Neurobiol Aging 2022; 117:151-164. [DOI: 10.1016/j.neurobiolaging.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
6
|
Grella SL, Gomes SM, Lackie RE, Renda B, Marrone DF. Norepinephrine as a spatial memory reset signal. Behav Pharmacol 2021; 32:531-548. [PMID: 34417358 DOI: 10.1097/fbp.0000000000000648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contextual information is represented in the hippocampus (HPC) partially through the recruitment of distinct neuronal ensembles. It is believed that reactivation of these ensembles underlies memory retrieval processes. Recently, we showed that norepinephrine input from phasic locus coeruleus activation induces hippocampal plasticity resulting in the recruitment of new neurons and disengagement from previously established representations. We hypothesize that norepinephrine may provide a neuromodulatory mnemonic switch signaling the HPC to move from a state of retrieval to encoding in the presence of novelty, and therefore, plays a role in memory updating. Here, we tested whether bilateral dorsal dentate gyrus (dDG) infusions of the β-adrenergic receptor (BAR) agonist isoproterenol (ISO), administered prior to encoding or retrieval, would impair spatial working and reference memory by reverting, the system to encoding (thereby recruiting new neurons) potentially interfering with the retrieval of the previously established spatial ensemble. We also investigated whether dDG infusions of ISO could promote cognitive flexibility by switching the system to encoding when it is adaptive (ie, when new information is presented, eg, reversal learning). We found that intra-dDG infusions of ISO given prior to retrieval caused deficits in working and reference memory which was blocked by pretreatment with the BAR-antagonist, propranolol (PRO). In contrast, ISO administered prior to reversal learning led to improved performance. These data support our hypothesis that norepinephrine serves as a novelty signal to update HPC contextual representations via BAR activation-facilitated recruitment of new neurons. This can be both maladaptive and adaptive depending on the situation.
Collapse
Affiliation(s)
- Stephanie L Grella
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Sarah M Gomes
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston
| | - Rachel E Lackie
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Program in Neuroscience, Robarts Research Institute, University of Western Ontario, London
| | - Briana Renda
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- McKnight Brain Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Li K, Fu Z, Qi S, Luo X, Zeng Q, Xu X, Huang P, Zhang M, Calhoun VD. Polygenic Hazard Score Associated Multimodal Brain Networks Along the Alzheimer's Disease Continuum. Front Aging Neurosci 2021; 13:725246. [PMID: 34539385 PMCID: PMC8446666 DOI: 10.3389/fnagi.2021.725246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is a polygenic neurodegenerative disease. Identifying the neuroimaging phenotypes behind the genetic predisposition of AD is critical to the understanding of AD pathogenesis. Two major questions which previous studies have led to are: (1) should the general "polygenic hazard score" (PHS) be a good choice to identify the individual genetic risk for AD; and (2) should researchers also include inter-modality relationships in the analyses considering these may provide complementary information about the AD etiology. METHODS We collected 88 healthy controls, 77 patients with mild cognitive impairment (MCI), and 22 AD patients to simulate the AD continuum included from the ADNI database. PHS-guided multimodal fusion was used to investigate the impact of PHS on multimodal brain networks in AD-continuum by maximizing both inter-modality association and reference-modality correlation. Fractional amplitude of low frequency fluctuations, gray matter (GM) volume, and amyloid standard uptake value ratios were included as neuroimaging features. Eventually, the changes in neuroimaging features along AD continuum were investigated, and relationships between cognitive performance and identified PHS associated multimodal components were established. RESULTS We found that PHS was associated with multimodal brain networks, which showed different functional and structural impairments under increased amyloid deposits. Notably, along with AD progression, functional impairment occurred before GM atrophy, amyloid deposition started from the MCI stage and progressively increased throughout the disease continuum. CONCLUSION PHS is associated with multi-facets of brain impairments along the AD continuum, including cognitive dysfunction, pathological deposition, which might underpin the AD pathogenesis.
Collapse
Affiliation(s)
- Kaicheng Li
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Shile Qi
- Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Psychology, Computer Science, Neuroscience Institute, and Physics, Georgia State University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
8
|
Yang D, Huang L, Luo C, Li M, Qin R, Ma J, Shao P, Xu H, Zhang B, Xu Y, Zhang M. Impaired Structural Network Properties Caused by White Matter Hyperintensity Related to Cognitive Decline. Front Neurol 2020; 11:250. [PMID: 32373044 PMCID: PMC7186334 DOI: 10.3389/fneur.2020.00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: There is a high correlation between white matter hyperintensity (WMH) and cognitive impairment (CI) in elderly people. However, not all WMH will develop into CI, and the potential mechanism of WMH-related CI is still unclear. This study aimed to investigate the topological properties of white matter structural network in WMH-related CI. Methods: Forty-one WMH subjects with CI (WMH-CI), 42 WMH subjects without CI (WMH-no-CI), and 52 elderly healthy controls (HC) were recruited. Diffusion tensor imaging (DTI) fiber tractography and graph theoretical analysis were applied to construct the structural network. We compared network properties and clinical features among the three groups. Multiple linear regression analysis was performed to investigate the relationships among WMH volumes, impaired network properties, and cognitive functions in the WMH-CI group. Results: Compared with the controls, both WMH groups showed decreased network strength, global efficiency, and increased characteristic path length (Lp) at the level of the whole brain. The WMH-CI group displayed more profound impairments of nodal efficiency and nodal path length (NLp) within multiple regions including precentral, cingulate, and medial temporal gyrus. The disrupted network properties were associated with CI and WMH burdens in the WMH-CI group. Furthermore, a mediation effect of NLp in the left inferior frontal gyrus was observed for the association between periventricular WMH (PWMH) and memory deficit. Conclusions: Brain structural network in WMH-CI is significantly disturbed, and this disturbance is related to the severity of WMH and CI. Increased NLp in the left opercular part of inferior frontal gyrus (IFGoperc.L) was shown to be a mediation framework between PWMH and WMH-related memory, which shed light on investigating the underlying mechanisms of CI caused by WMH.
Collapse
Affiliation(s)
- Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
9
|
Effects of ketamine on brain function during response inhibition. Psychopharmacology (Berl) 2018; 235:3559-3571. [PMID: 30357437 DOI: 10.1007/s00213-018-5081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. METHODS To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. RESULTS While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. DISCUSSION Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context.
Collapse
|
10
|
Luby JL, Barch D, Whalen D, Tillman R, Belden A. Association Between Early Life Adversity and Risk for Poor Emotional and Physical Health in Adolescence: A Putative Mechanistic Neurodevelopmental Pathway. JAMA Pediatr 2017; 171:1168-1175. [PMID: 29084329 PMCID: PMC6583637 DOI: 10.1001/jamapediatrics.2017.3009] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Adverse childhood experiences (ACEs) have been associated with poor mental and physical health outcomes. However, the mechanism of this effect, critical to enhancing public health, remains poorly understood. OBJECTIVE To investigate the neurodevelopmental trajectory of the association between early ACEs and adolescent general and emotional health outcomes. DESIGN, SETTING, AND PARTICIPANTS A prospective longitudinal study that began when patients were aged 3 to 6 years who underwent neuroimaging later at ages 7 to 12 years and whose mental and physical health outcomes were observed at ages 9 to 15 years. Sequential mediation models were used to investigate associations between early ACEs and brain structure, emotion development, and health outcomes longitudinally. Children were recruited from an academic medical center research unit. EXPOSURE Early life adversity. MAIN OUTCOMES AND MEASURES Early ACEs in children aged 3 to 7 years; volume of a subregion of the prefrontal cortex, the inferior frontal gyrus, in children aged 6 to 12 years; and emotional awareness, depression severity, and general health outcomes in children and adolescents aged 9 to 15 years. RESULTS The mean (SD) age of 119 patients was 9.65 (1.31) years at the time of scan. The mean (SD) ACE score was 5.44 (3.46). The mean (SD) depression severity scores were 2.61 (1.78) at preschool, 1.77 (1.58) at time 2, and 2.16 (1.64) at time 3. The mean (SD) global physical health scores at time 2 and time 3 were 0.30 (0.38) and 0.33 (0.42), respectively. Sequential mediation in the association between high early ACEs and emotional and physical health outcomes were found. Smaller inferior frontal gyrus volumes and poor emotional awareness sequentially mediated the association between early ACEs and poor general health (model parameter estimate = 0.002; 95% CI, 0.0002-0.056) and higher depression severity (model parameter estimate = 0.007; 95% CI, 0.001-0.021) in adolescence. An increase from 0 to 3 early ACEs was associated with 15% and 25% increases in depression severity and physical health problems, respectively. CONCLUSIONS AND RELEVANCE Study findings highlight 1 putative neurodevelopmental mechanism by which the association between early ACEs and later poor mental and physical health outcomes may operate. This identified risk trajectory may be useful to target preventive interventions.
Collapse
Affiliation(s)
- Joan L. Luby
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Deanna Barch
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri,Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Diana Whalen
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Andy Belden
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
11
|
Mu J, Chen T, Liu Q, Ding D, Ma X, Li P, Li A, Huang M, Zhang Z, Liu J, Zhang M. Abnormal interaction between cognitive control network and affective network in patients with end-stage renal disease. Brain Imaging Behav 2017; 12:1099-1111. [DOI: 10.1007/s11682-017-9782-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
General and emotion-specific neural effects of ketamine during emotional memory formation. Neuroimage 2017; 150:308-317. [PMID: 28232170 DOI: 10.1016/j.neuroimage.2017.02.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/04/2017] [Accepted: 02/18/2017] [Indexed: 01/07/2023] Open
Abstract
Animal studies suggest that N-methyl-D-aspartate receptor (NMDAR) dependent signalling in limbic and prefrontal regions is critically involved in both cognitive and emotional functions. In humans, ketamine-induced transient, and disorder associated chronic NMDAR hypofunction (i.e. in schizophrenia) has been associated with deficient performance in the domains of memory and higher-order emotional functioning, as well as altered neural activity in the underlying limbic-prefrontal circuits. To model the effects of NMDAR hypofunction on the integration of emotion and cognition the present pharmacological fMRI study applied the NMDAR antagonist ketamine (target plasma level=100ng/ml) to 21 healthy volunteers in a within-subject placebo-controlled crossover design during encoding of neutral, positive and negative pictures. Our results show that irrespective of emotion, ketamine suppressed parahippocampal and medial prefrontal activity. In contrast, ketamine selectively increased amygdala and orbitofrontal activity during successful encoding of negative stimuli. On the network level ketamine generally increased medial prefrontal-parahippocampal coupling while specifically decreasing amygdala-orbitofrontal interplay during encoding of negative stimuli. On the behavioural level, ketamine produced generally decreased memory performance and abolished the emotional enhancement of memory after a wash-out period of 5 days. The present findings suggest that ketamine produces general as well as valence-specific effects during emotional memory formation. The pattern partly overlaps with alterations previously observed in patients with schizophrenia.
Collapse
|
13
|
Sperl MFJ, Panitz C, Hermann C, Mueller EM. A pragmatic comparison of noise burst and electric shock unconditioned stimuli for fear conditioning research with many trials. Psychophysiology 2016; 53:1352-65. [PMID: 27286734 DOI: 10.1111/psyp.12677] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/28/2016] [Indexed: 01/01/2023]
Abstract
Several methods that are promising for studying the neurophysiology of fear conditioning (e.g., EEG, MEG) require a high number of trials to achieve an adequate signal-to-noise ratio. While electric shock and white noise burst are among the most commonly used unconditioned stimuli (US) in conventional fear conditioning studies with few trials, it is unknown whether these stimuli are equally well suited for paradigms with many trials. Here, N = 32 participants underwent a 260-trial differential fear conditioning and extinction paradigm with a 240-trial recall test 24 h later and neutral faces as conditioned stimuli. In a between-subjects design, either white noise bursts (n = 16) or electric shocks (n = 16) served as US, and intensities were determined using the most common procedure for each US (i.e., a fixed 95 dB noise burst and a work-up procedure for electric shocks, respectively). In addition to differing US types, groups also differed in closely linked US-associated characteristics (e.g., calibration methods, stimulus intensities, timing). Subjective ratings (arousal/valence), skin conductance, and evoked heart period changes (i.e., fear bradycardia) indicated more reliable, extinction-resistant, and stable conditioning in the white noise burst versus electric shock group. In fear conditioning experiments where many trials are presented, white noise burst should serve as US.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Christian Panitz
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Christiane Hermann
- Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| |
Collapse
|
14
|
Eckstein M, Scheele D, Patin A, Preckel K, Becker B, Walter A, Domschke K, Grinevich V, Maier W, Hurlemann R. Oxytocin Facilitates Pavlovian Fear Learning in Males. Neuropsychopharmacology 2016; 41:932-939. [PMID: 26272050 PMCID: PMC4748433 DOI: 10.1038/npp.2015.245] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/29/2022]
Abstract
In human evolution, social group living and Pavlovian fear conditioning have evolved as adaptive mechanisms promoting survival and reproductive success. The evolutionarily conserved hypothalamic peptide oxytocin is a key modulator of human sociality, but its effects on fear conditioning are still elusive. In the present randomized controlled study involving 97 healthy male subjects, we therefore employed functional magnetic resonance imaging and simultaneous skin conductance response (SCR) measures to characterize the modulatory influence of intranasal oxytocin (24 IU) on Pavlovian fear conditioning. We found that the peptide strengthened conditioning on both the behavioral and neural levels. Specifically, subjects exhibited faster task-related responses and enhanced SCRs to fear-associated stimuli in the late phase of conditioning, which was paralleled by heightened activity in cingulate cortex subregions in the absence of changes in amygdala function. This speaks against amygdalocentric views of oxytocin having pure anxiolytic-like effects. Instead, it suggests that the peptide enables extremely rapid and flexible adaptation to fear signals in social contexts, which may confer clear evolutionary advantages but could also elevate vulnerability for the pathological sequelae of interpersonal trauma.
Collapse
Affiliation(s)
- Monika Eckstein
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Dirk Scheele
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Alexandra Patin
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Katrin Preckel
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Benjamin Becker
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Annika Walter
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, University of Bonn, Bonn, Germany
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Eckstein M, Becker B, Scheele D, Scholz C, Preckel K, Schlaepfer TE, Grinevich V, Kendrick KM, Maier W, Hurlemann R. Oxytocin facilitates the extinction of conditioned fear in humans. Biol Psychiatry 2015; 78:194-202. [PMID: 25542304 DOI: 10.1016/j.biopsych.2014.10.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Current neurocircuitry models of anxiety disorders posit a lack of inhibitory tone in the amygdala during acquisition of Pavlovian fear responses and deficient encoding of extinction responses in amygdala-medial prefrontal cortex circuits. Competition between these two responses often results in a return of fear, limiting control over anxiety. However, one hypothesis holds that a pharmacologic strategy aimed at reducing amygdala activity while simultaneously augmenting medial prefrontal cortex function could facilitate the extinction of conditioned fear. METHODS Key among the endogenous inhibitors of amygdala activity in response to social fear signals is the hypothalamic peptide oxytocin. To address the question whether oxytocin can strengthen Pavlovian extinction beyond its role in controlling social fear, we conducted a functional magnetic resonance imaging experiment with 62 healthy male participants in a randomized, double-blind, parallel-group, placebo-controlled design. Specifically, subjects were exposed to a Pavlovian fear conditioning paradigm before receiving an intranasal dose (24 IU) of synthetic oxytocin or placebo. RESULTS Oxytocin, when administered intranasally after Pavlovian fear conditioning, was found to increase electrodermal responses and prefrontal cortex signals to conditioned fear in the early phase of extinction and to enhance the decline of skin conductance responses in the late phase of extinction. Oxytocin also evoked an unspecific inhibition of amygdalar responses in both phases. CONCLUSIONS Collectively, our findings identify oxytocin as a differentially acting modulator of neural hubs involved in Pavlovian extinction. This specific profile of oxytocin action may open up new avenues for enhancing extinction-based therapies for anxiety disorders.
Collapse
Affiliation(s)
- Monika Eckstein
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Benjamin Becker
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Dirk Scheele
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Claudia Scholz
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Katrin Preckel
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Thomas E Schlaepfer
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Departments of Psychiatry and Mental Health, The Johns Hopkins University, Baltimore, Maryland
| | | | - Keith M Kendrick
- Key Laboratory for Neuroinformation, School of Life Science & Technology, University of Electronic Science & Technology of China, Chengdu, China
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany.; German Center for Neurodegenerative Diseases, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, University of Bonn, Bonn, Germany.; Division of Medical Psychology, University of Bonn, Bonn, Germany..
| |
Collapse
|
16
|
Alavash M, Doebler P, Holling H, Thiel CM, Gießing C. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance? Neuroimage 2014; 108:182-93. [PMID: 25536495 DOI: 10.1016/j.neuroimage.2014.12.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 01/29/2023] Open
Abstract
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance.
Collapse
Affiliation(s)
- Mohsen Alavash
- Biological Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, 26111 Oldenburg, Germany.
| | - Philipp Doebler
- Department of Psychology and Sport Sciences, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
| | - Heinz Holling
- Department of Psychology and Sport Sciences, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, 26111 Oldenburg, Germany.
| | - Carsten Gießing
- Biological Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, 26111 Oldenburg, Germany.
| |
Collapse
|