1
|
Zhu K, Yang W, Ying Z, Cai Y, Peng X, Zhang N, Sun H, Ji Y, Ge M. Long-term postoperative quality of life in childhood survivors with cerebellar mutism syndrome. Front Psychol 2023; 14:1130331. [PMID: 36910828 PMCID: PMC9998537 DOI: 10.3389/fpsyg.2023.1130331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background To investigate the long-term quality of life (QoL) of children with cerebellar mutism syndrome (CMS) and explore the risk factors for a low QoL. Procedure This cross-sectional study investigated children who underwent posterior fossa surgery using an online Pediatric Quality of Life Inventory questionnaire. CMS and non-CMS patients were included to identify QoL predictors. Results Sixty-nine patients were included (male, 62.3%), 22 of whom had CMS. The mean follow-up time was 45.2 months. Children with CMS had a significantly lower mean QoL score (65.3 vs. 83.7, p < 0.001) and subdomain mean scores (physical; 57.8 vs. 85.3, p < 0.001; social: 69.5 vs. 85.1, p = 0.001; academic: p = 0.001) than those without CMS, except for the emotional domain (78.0 vs. 83.7, p = 0.062). Multivariable analysis revealed that CMS (coefficient = -14.748.61, p = 0.043), chemotherapy (coefficient = -7.629.82, p = 0.013), ventriculoperitoneal (VP) shunt placement (coefficient = -10.14, p = 0.024), and older age at surgery (coefficient = -1.1830, p = 0.007) were independent predictors of low total QoL scores. Physical scores were independently associated with CMS (coefficient = -27.4815.31, p = 0.005), VP shunt placement (coefficient = -12.86, p = 0.025), and radiotherapy (coefficient = -13.62, p = 0.007). Emotional score was negatively associated with age at surgery (coefficient = -1.92, p = 0.0337) and chemotherapy (coefficient = -9.11, p = 0.003). Social scores were negatively associated with male sex (coefficient = -13.68, p = 0.001) and VP shunt placement (coefficient = -1.36, p = 0.005), whereas academic scores were negatively correlated with chemotherapy (coefficient = -17.45, p < 0.001) and age at surgery (coefficient = -1.92, p = 0.002). Extent of resection (coefficient = 13.16, p = 0.021) was a good predictor of higher academic scores. Conclusion CMS results in long-term neurological and neuropsychological deficits, negatively affecting QoL, and warranting early rehabilitation.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Department of Cardiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zesheng Ying
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yingjie Cai
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - XiaoJiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nijia Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hailang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuanqi Ji
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
2
|
Jamshidi J, Park HRP, Montalto A, Fullerton JM, Gatt JM. Wellbeing and brain structure: A comprehensive phenotypic and genetic study of image-derived phenotypes in the UK Biobank. Hum Brain Mapp 2022; 43:5180-5193. [PMID: 35765890 PMCID: PMC9812238 DOI: 10.1002/hbm.25993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023] Open
Abstract
Wellbeing, an important component of mental health, is influenced by genetic and environmental factors. Previous association studies between brain structure and wellbeing have typically focused on volumetric measures and employed small cohorts. Using the UK Biobank Resource, we explored the relationships between wellbeing and brain morphometrics (volume, thickness and surface area) at both phenotypic and genetic levels. The sample comprised 38,982 participants with neuroimaging and wellbeing phenotype data, of which 19,234 had genotypes from which wellbeing polygenic scores (PGS) were calculated. We examined the association of wellbeing phenotype and PGS with all brain regions (including cortical, subcortical, brainstem and cerebellar regions) using multiple linear models, including (1) basic neuroimaging covariates and (2) additional demographic factors that may synergistically impact wellbeing and its neural correlates. Genetic correlations between genomic variants influencing wellbeing and brain structure were also investigated. Small but significant associations between wellbeing and volumes of several cerebellar structures (β = 0.015-0.029, PFDR = 0.007-3.8 × 10-9 ), brainstem, nucleus accumbens and caudate were found. Cortical associations with wellbeing included volume of right lateral occipital, thickness of bilateral lateral occipital and cuneus, and surface area of left superior parietal, supramarginal and pre-/post-central regions. Wellbeing-PGS was associated with cerebellar volumes and supramarginal surface area. Small mediation effects of wellbeing phenotype and PGS on right VIIIb cerebellum were evident. No genetic correlation was found between wellbeing and brain morphometric measures. We provide a comprehensive overview of wellbeing-related brain morphometric variation. Notably, small effect sizes reflect the multifaceted nature of this concept.
Collapse
Affiliation(s)
- Javad Jamshidi
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Haeme R. P. Park
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Arthur Montalto
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Janice M. Fullerton
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Justine M. Gatt
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Wang J, Nichols ES, Mueller ME, de Vrijer B, Eagleson R, McKenzie CA, de Ribaupierre S, Duerden EG. Semi-automatic segmentation of the fetal brain from magnetic resonance imaging. Front Neurosci 2022; 16:1027084. [PMID: 36440277 PMCID: PMC9692018 DOI: 10.3389/fnins.2022.1027084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2023] Open
Abstract
Background Volumetric measurements of fetal brain maturation in the third trimester of pregnancy are key predictors of developmental outcomes. Improved understanding of fetal brain development trajectories may aid in identifying and clinically managing at-risk fetuses. Currently, fetal brain structures in magnetic resonance images (MRI) are often manually segmented, which requires both time and expertise. To facilitate the targeting and measurement of brain structures in the fetus, we compared the results of five segmentation methods applied to fetal brain MRI data to gold-standard manual tracings. Methods Adult women with singleton pregnancies (n = 21), of whom five were scanned twice, approximately 3 weeks apart, were recruited [26 total datasets, median gestational age (GA) = 34.8, IQR = 30.9-36.6]. T2-weighted single-shot fast spin echo images of the fetal brain were acquired on 1.5T and 3T MRI scanners. Images were first combined into a single 3D anatomical volume. Next, a trained tracer manually segmented the thalamus, cerebellum, and total cerebral volumes. The manual segmentations were compared with five automatic methods of segmentation available within Advanced Normalization Tools (ANTs) and FMRIB's Linear Image Registration Tool (FLIRT) toolboxes. The manual and automatic labels were compared using Dice similarity coefficients (DSCs). The DSC values were compared using Friedman's test for repeated measures. Results Comparing cerebellum and thalamus masks against the manually segmented masks, the median DSC values for ANTs and FLIRT were 0.72 [interquartile range (IQR) = 0.6-0.8] and 0.54 (IQR = 0.4-0.6), respectively. A Friedman's test indicated that the ANTs registration methods, primarily nonlinear methods, performed better than FLIRT (p < 0.001). Conclusion Deformable registration methods provided the most accurate results relative to manual segmentation. Overall, this semi-automatic subcortical segmentation method provides reliable performance to segment subcortical volumes in fetal MR images. This method reduces the costs of manual segmentation, facilitating the measurement of typical and atypical fetal brain development.
Collapse
Affiliation(s)
- Jianan Wang
- Biomedical Engineering, Western University, London, ON, Canada
| | - Emily S. Nichols
- Applied Psychology, Faculty of Education, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Megan E. Mueller
- Applied Psychology, Faculty of Education, Western University, London, ON, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Roy Eagleson
- Biomedical Engineering, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Charles A. McKenzie
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sandrine de Ribaupierre
- Biomedical Engineering, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Emma G. Duerden
- Biomedical Engineering, Western University, London, ON, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
| |
Collapse
|
4
|
Zhang T, Zhang Q, Wu J, Wang M, Li W, Yan J, Zhang J, Jin Z, Li L. The critical role of the orbitofrontal cortex for regret in an economic decision-making task. Brain Struct Funct 2022; 227:2751-2767. [DOI: 10.1007/s00429-022-02568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
|
5
|
Clausi S, Siciliano L, Olivito G, Leggio M. Cerebellum and Emotion in Social Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:235-253. [PMID: 35902475 DOI: 10.1007/978-3-030-99550-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the cerebellum plays a crucial role not only in the motor and cognitive domains but also in emotions and social behavior. In the present chapter, after a general introduction on the significance of the emotional components of social behavior, we describe recent efforts to understand the contributions of the cerebellum in social cognition focusing on the emotional and affective aspects. Specifically, starting from the description of the cerebello-cortical networks subtending the social-affective domains, we illustrate the most recent findings on the social cerebellum and the possible functional mechanisms by which the cerebellum modulate social-affective behavior. Finally, we discuss the possible consequences of cerebellar dysfunction in the social-affective domain, focusing on those neurological and psychopathological conditions in which emotional and social behavior difficulties have been described as being associated with cerebellar structural or functional alterations.
Collapse
Affiliation(s)
- Silvia Clausi
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy. .,Psychology Department, Sapienza University, Rome, Italy.
| | - Libera Siciliano
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Maria Leggio
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Baumann O, Mattingley JB. Cerebellum and Emotion Processing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:25-39. [DOI: 10.1007/978-3-030-99550-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci 2021; 15:599-613. [PMID: 32507876 PMCID: PMC7328022 DOI: 10.1093/scan/nsaa076] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The basal ganglia (BG) and the cerebellum historically have been relegated to a functional role in producing or modulating motor output. Recent research, however, has emphasized the importance of these subcortical structures in multiple functional domains, including affective processes such as emotion recognition, subjective feeling elicitation and reward valuation. The pathways through the thalamus that connect the BG and cerebellum directly to each other and with extensive regions of the cortex provide a structural basis for their combined influence on limbic function. By regulating cortical oscillations to guide learning and strengthening rewarded behaviors or thought patterns to achieve a desired goal state, these regions can shape the way an individual processes emotional stimuli. This review will discuss the basic structure and function of the BG and cerebellum and propose an updated view of their functional role in human affective processing.
Collapse
Affiliation(s)
- Jordan E Pierce
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
8
|
Impairments in Emotion Recognition and Risk-Taking Behavior After Isolated, Cerebellar Stroke. THE CEREBELLUM 2021; 19:419-425. [PMID: 32108305 PMCID: PMC7198481 DOI: 10.1007/s12311-020-01121-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing amount of research has shown a cerebellar involvement in higher order cognitive functions, including emotional processing and decision-making. However, it has not been investigated whether impairments in facial emotion recognition, which could be a marker of impaired emotional experiences, are related to risky decision-making in these patients. Therefore, we aimed to investigate facial emotion recognition and risky decision-making in these patients as well as to investigate a relationship between these constructs. Thirteen patients with a discrete, isolated, cerebellar lesion as a consequence of a stroke were included in the study. Emotion recognition was assessed with the Facial Expressions of Emotions—Stimuli and Test (FEEST). Risk-taking behavior was assessed with the Action Selection Test (AST). Furthermore, 106 matched healthy controls performed the FEEST and 20 matched healthy controls performed the AST. Compared with healthy controls, patients were significantly worse in the recognition of emotional expressions and they took significantly more risks. In addition, a worse ability to recognize fearful facial expressions was strongly related to an increase in risky decisions in the AST. Therefore, we suggest that tests of emotion recognition should be incorporated into the neuropsychological assessment after cerebellar stroke to boost detection and treatment of these impairments in these patients.
Collapse
|
9
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
10
|
Moreira PS, Macoveanu J, Marques P, Coelho A, Magalhães R, Siebner HR, Soares JM, Sousa N, Morgado P. Altered response to risky decisions and reward in patients with obsessive–compulsive disorder. J Psychiatry Neurosci 2020; 45:98-107. [PMID: 31509362 PMCID: PMC7828903 DOI: 10.1503/jpn.180226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Patients with obsessive–compulsive disorder (OCD) employ ritualistic behaviours to reduce or even neutralize the anxiety provoked by their obsessions. The presence of excessive rumination and indecision has motivated the view of OCD as a disorder of decision-making. Most studies have focused on the “cold,” cognitive aspects of decision-making. This study expands current understanding of OCD by characterizing the abnormalities associated with affective, or “hot” decision-making. METHODS We performed a functional MRI study in a sample of 34 patients with OCD and 33 sex- and age-matched healthy controls, during which participants made 2-choice gambles taking varying levels of risk. RESULTS During risky decisions, patients showed significantly reduced task-related activation in the posterior cingulum, lingual gyrus and anterior cingulate cortex. We identified significant group × risk interactions in the calcarine cortex, precuneus, amygdala and anterior cingulate cortex. During the outcome phase, patients with OCD showed stronger activation of the orbitofrontal cortex, anterior cingulate cortex and putamen in response to unexpected losses. LIMITATIONS The group of patients not receiving medication was very small (n = 5), which precluded us from assessing the effect of medication on risk-taking behaviour in these patients. CONCLUSION Obsessive–compulsive disorder is associated with abnormal brain activity patterns during risky decision-making in a set of brain regions that have been consistently implicated in the processing of reward prediction errors. Alterations in affective “hot” processes implicated in decision-making may contribute to increased indecisiveness and intolerance to uncertainty in patients with OCD.
Collapse
Affiliation(s)
- Pedro Silva Moreira
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Julian Macoveanu
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Paulo Marques
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Ana Coelho
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Ricardo Magalhães
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Hartwig R. Siebner
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - José Miguel Soares
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Nuno Sousa
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Pedro Morgado
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| |
Collapse
|
11
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2020; 19:102-125. [PMID: 31522332 PMCID: PMC6978293 DOI: 10.1007/s12311-019-01068-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703 Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000 Charleroi, Belgium
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
12
|
Siciliano L, Clausi S. Implicit vs. Explicit Emotion Processing in Autism Spectrum Disorders: An Opinion on the Role of the Cerebellum. Front Psychol 2020; 11:96. [PMID: 32082228 PMCID: PMC7005590 DOI: 10.3389/fpsyg.2020.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Libera Siciliano
- PhD Program in Behavioral Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2019. [PMID: 31522332 DOI: 10.1007/s12311‐019‐01068‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703, Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.,Department of Neurosciences, University of Mons, 7000, Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Ferrari C, Oldrati V, Gallucci M, Vecchi T, Cattaneo Z. The role of the cerebellum in explicit and incidental processing of facial emotional expressions: A study with transcranial magnetic stimulation. Neuroimage 2017; 169:256-264. [PMID: 29246845 DOI: 10.1016/j.neuroimage.2017.12.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Growing evidence suggests that the cerebellum plays a critical role in non-motor functions, contributing to cognitive and affective processing. In particular, the cerebellum might represent an important node of the "limbic" network, underlying not only emotion regulation but also emotion perception and recognition. Here, we used transcranial magnetic stimulation (TMS) to shed further light on the role of the cerebellum in emotional perception by specifically testing cerebellar contribution to explicit and incidental emotional processing. In particular, in three different experiments, we found that TMS over the (left) cerebellum impaired participants' ability to categorize facial emotional expressions (explicit task) and to classify the gender of emotional faces (incidental emotional processing task), but not the gender of neutral faces. Overall, our results indicate that the cerebellum is involved in perceiving the emotional content of facial stimuli, even when this is task irrelevant.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy
| | - Viola Oldrati
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Marcello Gallucci
- Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia 27100, Italy.
| |
Collapse
|
15
|
Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Mariën P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus Paper: Cerebellum and Emotion. THE CEREBELLUM 2017; 16:552-576. [PMID: 27485952 DOI: 10.1007/s12311-016-0815-8] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.
Collapse
Affiliation(s)
- M Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht, 01731, Kreischa, Germany.
| | - F D'Agata
- Department of Neuroscience, University of Turin, Turin, Italy
| | - R Ferrucci
- Fondazione IRCCS Ca' Granda, Granada, Italy
- Università degli Studi di Milano, Milan, Italy
| | - C Habas
- Service de NeuroImagerie (NeuroImaging department) Centre Hospitalier national D'Ophtalmologie des 15/20, Paris, France
| | - S Keulen
- Department of Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Language and Cognition Groningen, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - K C Kirkby
- Psychiatry, School of Medicine, University of Tasmania, Hobart, Australia
| | - M Leggio
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - P Mariën
- Department of Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Antwerp, Belgium
| | - M Molinari
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - E Moulton
- P.A.I.N. Group, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Orsi
- Neurologic Division 1, Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Turin, Italy
| | - F Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Center, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Priori
- Fondazione IRCCS Ca' Granda, Granada, Italy
- Università degli Studi di Milano, Milan, Italy
- III Clinica Neurologica, Polo Ospedaliero San Paolo, San Paolo, Italy
| | - B Sacchetti
- Department of Neuroscience, Section of Physiology, University of Turin, Torino, Italy
| | - D J Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - C Styliadis
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - J Verhoeven
- Department of Language and Communication Science, City University, London, UK
- Computational Linguistics and Psycholinguistics Research Center (CLIPS), Universiteit Antwerpen, Antwerp, Belgium
| |
Collapse
|
16
|
The Role of the Cerebellum in Unconscious and Conscious Processing of Emotions: A Review. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Peterburs J, Desmond JE. The role of the human cerebellum in performance monitoring. Curr Opin Neurobiol 2016; 40:38-44. [PMID: 27372055 DOI: 10.1016/j.conb.2016.06.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
While the cerebellum has traditionally been thought of as mainly involved in motor functions, evidence has been accumulating for cerebellar contributions also to non-motor, cognitive functions. The notion of a cerebellar internal model underlying prediction and processing of sensory events and coordination and fine-tuning of appropriate responses has put the cerebellum right at the interface of motor behavior and cognition. Along these lines, the cerebellum may critically contribute to performance monitoring, a set of cognitive and affective functions underlying adaptive behavior. This review presents and integrates evidence from recent neuroimaging and clinical studies for a cerebellar role in performance monitoring with focus on sensory prediction, error and conflict processing, response inhibition, and feedback learning. Together with evidence for involvement in articulatory monitoring during working memory, these findings suggest monitoring as the cerebellum's overarching function.
Collapse
Affiliation(s)
- Jutta Peterburs
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149 Münster, Germany; Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|